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ABSTRACT 

It is well known that the use of Portland cement (PC) in concrete construction is causing severe 

environmental issues primarily due to vast quantity of carbon dioxide released to the atmosphere 

leading to global warming during its manufacture. On the other hand, disposal of industrial solid 

wastes such as fly ash and slag in landfills creates another threat to the environment. The 

development of a fly ash geopolymer binder, produced from the reaction of fly ash and an alkaline 

solution, may replace Portland cement as a construction material while simultaneously reducing 

the amount of fly ash needing to be disposed of in landfills. 

This dissertation reports on efforts to optimize mix proportion, predictive modeling on early 

age properties, shrinkage control, and mechanical performance of an engineered composite made 

with fly ash-based geopolymer. It’s four component studies are: (1) Optimization of Mix Design 

Parameters on Thermal, Setting and Stiffening Behaviors of High-Calcium Fly Ash Geopolymer; 

(2) Prediction of Strength, Setting Time and Heat Generation of Fly Ash Geopolymer Using An 

Artificial Neural Network; (3) The Effects of Activator and Shrinkage Reducing Admixture on 

Shrinkage Behavior of Fly Ash Geopolymer, and (4) The Effect of Slag on Mechanical Properties 

of An Engineered Geopolymer Composite.  

Due to the paucity of knowledge to optimize the mix proportion of fly-ash-based geopolymer 

in the published literature, Paper 1 is focused on the effects of design parameters including 

SiO2/Na2O molar ratio (Module) and solute (NaOH and Na2SiO3) mass concentration on both fresh 

and hardened PC properties (i.e., setting time, compressive strength, heat of hydration). The 

knowledge gained from this study is expected to assist in the optimization of the mix proportions 

for the fly ash geopolymer. Results from Paper 1 have shown that modules less than 1.5, 
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concentrations between 40% and 50%, L/F ratios less than 0.40, and higher curing temperature, 

(such as 50℃) were preferred to synthesize a geopolymer system using high-calcium fly ash. 

In Paper 2, an artificial neural network (ANN) approach was applied to analyze the complexity 

between geopolymer properties and various parameters for geopolymer mix proportion design. 

The predictive models for setting time and compressive strength of geopolymer were established 

to simplify mix design. Paper 2 concluded that ANN was an effective tool for conducting a 

parametric study of fly ash geopolymer properties. The effects of mix design parameters on setting 

time, compressive strength and heat generation were discussed in accordance with the prediction 

profiler generated by the ANN models. The proposed model can be used to guide high-calcium fly 

ash geopolymer mix design in the future. 

Shrinkage of cement-based materials is a major cause of cracking.  The work discussed in 

Paper 3 characterized the shrinkage behavior (e.g., free drying shrinkage and restrained ring 

shrinkage) of fly-ash-based geopolymer in comparison with that of traditional PC paste. The 

effects of activator (Module and Concentration) and shrinkage reducing admixture (SR) on the 

shrinkage behavior of fly-ash-based geopolymer have been explored.  In addition, the flowability 

of the geopolymer using a mini slump test and compressive strength test were also carried out. The 

results indicate that the fly ash geopolymer has comparable flowability to that of traditional PC. 

Increased SR slightly decreased flowability of both PC and fly ash geopolymer. It was also found 

that the drying shrinkage of fly ash geopolymer was of similar magnitude to that of PC, but that 

this similarity was not due to mass loss in the fly ash geopolymer. The SR significantly reduced 

(up to 52%) the drying shrinkage of fly ash geopolymer as well as in PC. The SR decreased the 

restrained shrinkage up to 16%, delayed the cracking time, reduced the crack width and lowered 

the cracking potential for both PC and fly ash geopolymer. The fly ash geopolymer mixtures had 
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lower cracking potential than PC. The effects of Module and Concentration on drying shrinkage 

and restrained ring shrinkage were also concluded. 

The last paper (Paper 4) investigated the mechanical performance of fly ash-based geopolymer 

in a fiber-reinforced composite, namely an engineered geopolymer composite (EGC). Fly ash was 

replaced with slag in the geopolymer. The physical and chemical interactions of these two 

cementitious materials have resulted in a high strength (up to 110 MPa) and workable EGC. The 

mechanical properties including compressive strength, tensile strength, tensile strain capacity, 

toughness, elasticity, flexural bending strength, ductility and pullout bond strength were assessed. 

Experimental results in Paper 4 revealed that all EGCs exhibited strain hardening behavior. The 

addition of 20% slag had the largest effect on engineering strength. However, as slag addition 

increased, the tensile strain capacity, ultimate deflections, toughness and ductility decreased. In 

addition, bond strength can be estimated precisely based on the compressive strength of EGCs. 
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CHAPTER 1. INTRODUCTION 

Background 

Concrete is the most widely used construction material in the world and typically is produced 

using Portland cement (PC) as the binder. The mass of PC used in concrete construction brings a 

critical environmental issue due to the high emission of carbon dioxide gas during its manufacture 

from the calcination of limestone and the combustion of fossil fuel. It has been reported that around 

5% of global carbon dioxide emissions is from the cement industry (IPCC 1997). Moreover, 

producing a ton of PC requires 4.9 million kilojoule of energy, equivalent to about 400 pounds of 

coal. Together, production of one ton of PC generates nearly a ton of CO2.  

On the other hand, fly ash, a by-product of burning coal in power plants, is abundant 

worldwide. The constituents of fly ash vary considerably depending on the source of the coal 

burned but the main components are SiO2 (40-60%), Al2O3 (20-30%), Fe2O3 (4-10%) and CaO (5-

30%). Fly ash usually contains toxic elements including arsenic, cadmium, chromium, lead and 

mercury. The majority of fly ash is currently dumped in landfills, creating a threat to the 

environment due to the impacts to groundwater and encroaching upon valuable open space and 

biodiversity (ACI 232). Over the years, many attempts have been made to divert fly ash from 

landfills, one of which is to use it as a supplementary cementitious material (SCM) for PC. Fly 

ash, with a low CaO content (Class F fly ash specified by ASTM C618), does not possess binding 

properties by itself. However, in the presence of water and at an ambient temperature, Class F fly 

ash reacts with the calcium hydroxide, a hydration product of PC, to form calcium silicate hydrate 

(C-S-H) gel. This process is called a pozzolanic reaction. It is the C-S-H gel formed from the 

pozzolanic reaction that possesses cementing properties. Based on this concept, high volume fly 

ash (HVFA) concrete, which has more than 60% by mass of its PC replacemed by fly ash has been 

http://na.unep.net/geas/science/alert_2010_10.php
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developed (Malhotra 2002; Malhotra and Mehta 2002). The advantages of using HVFA concrete 

are not only reducing CO2 emissions and cost, but also having improved workability, reduced free-

drying shrinkage and enhanced ultimate strength. 

 While SCMs are increasingly used in PC, another class of binders, first termed as geopolymer 

by Joseph Davidovits in 1978, has been developed. Different from HVFA concrete, 

geopolymerdoes not need the presence of PC. Instead, the source materials that are rich in silicon 

(Si) and aluminum (Al), such as fly ash or slag, are activated by alkaline chemicals. In this 

technology, the alkalinity of the activator can be low, mild, or high. The activator, with a low to 

medium alkalinity is generally used to activate silicon- and calcium-rich minerals (e.g., slag and 

Class C fly ash). The main reaction product is C-S-H gel. A high alkaline activator is frequently 

used to activate silicon- and aluminum-rich minerals, such as low calcium (ASTM Class F) fly ash 

(Palomo, Grutzeck et al. 1999). In this case, the cementing properties were generated through a 

process of polymerization.  It has been known that geopolymer possesses excellent early strength, 

resistance to sulfates, various acids, temperature extremes and minimal shrinkage. However, the 

disadvantages of using geopolymer including complex mix design parameters, strict curing 

condition and decreased workability cannot be disregarded. 

In 2015, during the initial stages of this dissertation, there were some research publications on 

geopolymer regarding the mix proportion, predictive modeling on strength, shrinkage behavior 

and the mechanical performance of engineered geopolymer composite. (Jo et al. 2015; Patankar et 

al. 2014; Khale and Chaudhary 2007; Krizan et al. 2002; Yadollahi et al. 2015; Ridtirud et al. 

2011; Deb et al. 2015; Palacios and Puertas 2005; Nematollahi et al. 2015). However, the overall 

consideration of mix design parameters in geopolymer early properties was limited. The effects of 

all mix design parameters need to be assessed. Moreover, the thermal behavior of geopolymer, 
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which largely controls its early properties, has not been fully explored in terms of mix design 

parameters. Additionally, because it is known that binder shrinkage is a critical cause for cracking 

in PC concrete, the shrinkage behavior of geopolymer should be investigated. To reduce shrinkage, 

shrinkage reducing admixtures (SR) have been effectively used in PC concrete. In order to provide 

a shrinkage control method for geopolymer, the evaluation of the effect of SR on geopolymer can 

be beneficial. Its relatively low strength is one of the biggest limitations of fly-ash-based 

engineered geopolymer composite (EGC). Replacing fly ash with slag could be an acceptable 

alternative to enhance the strength of fly ash-based EGC due to its high-calcium content, but 

maintaining strain hardening behavior because of fiber addition.  

Objective of Dissertation 

The overall goal of the research presented in this dissertation is to develop a high performance 

(highly workable, high strength, and high cracking resistance) engineered geopolymer composite 

(EGC). Several steps were made to achieve this goal: 

1. Exploration of the effects of mix design parameters (e.g., SiO2/Na2O mole ratio, solute 

mass concentration, activator to fly ash mass ratio, temperature and curing time) on basic 

geopolymer properties (e.g., strength, thermal and setting behaviors). 

2. Optimization of mix proportions based on the understanding of materials and mix 

proportion effects. 

3. Investigation of shrinkage cracking behavior of geopolymer made with various mix 

proportions and to effectively reduce shrinkage potential. 

4. Development of an EGC that possesses good workability, excellent mechanical properties 

(high strength and ductility) for cracking and impact resistance. 
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Dissertation Organization 

This dissertation consists of eight chapters.  

Chapter 1 provides a background and objectives of this dissertation.  

Chapter 2 includes a brief literature review on geopolymer theory, constituents, properties, and 

applications. 

Chapter 3 to 6 describe experimental methods, main findings, and interpretations. Each chapter 

comprises a paper that is ready for peer-review publication. The papers are ordered in the 

dissertation as follows: 

• Chapter 3 

Yifeng Ling, Kejin Wang, Xuhao Wang, Sudong Hua, Scott M. Schlorholtz. Optimization of 

Mix Design Parameters on Thermal, Setting and Stiffening Behaviors of High-calcium Fly Ash 

Geopolymer 

Chapter 3 explores the effect of mix design parameters on setting time, compressive strength 

and hydration characteristics of fly ash geopolymer. The optimized mix proportion of fly ash 

geopolymer is concluded. The mix design parameters considered in this chapter are SiO2/Na2O 

mole ratio (Module), NaOH and Na2SiO3 solute mass concentration (Concentration), activator 

solution-to-fly-ash ratio, curing temperature and time. 

• Chapter 4 

Yifeng Ling, Kejin Wang, Xuhao Wang. Prediction of Strength, Setting time and 

Geopolymerization Heat of Fly Ash Geopolymer Using Artificial Neural Network. 
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Chapter 4 presents a study that applies artificial neural networks to develop predictive models 

for setting time, compressive strength and geopolymerization heat of fly ash geopolymer. These 

models better account for the effect of each parameter on geopolymer performance .   

• Chapter 5 

Yifeng Ling, Kejin Wang, Chuanqing Fu. The Effects of Activator and Shrinkage Reducing 

Admixture on Shrinkage Behavior of Fly Ash Geopolymer. 

Chapter 5 covers a study on the effect of Module, Concentration and shrinkage reducing 

admixture (SR) on the flowability, compressive strength and shrinkage behavior of fly ash 

geopolymer compared to Portland cement. The shrinkage potential of fly ash geopolymer paste 

and PC is evaluated as well as the shrinkage reduction by using SR. 

• Chapter 6 

Yifeng Ling, Kejin Wang, Guyu Shi. The Effect of Slag on Mechanical Properties of 

Engineered Geopolymer Composite. 

Chapter 6 includes the findings of the study concerning the addition of slag in fly-ash-based 

engineered geopolymer composite (EGC) to improve its strength. The mechanical properties (e.g., 

compressive strength, tensile strength, flexural bending strength and pullout bond strength) are 

conducted with from 0% to 30% slag. The effects of slag on mechanical properties and strain 

hardening behavior of fly-ash-based EGC are investigated. 

Chapter 7 summarizes the major conclusions of this dissertation followed by the 

recommendations for future research in Chapter 8.  
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CHAPTER 2. LITERATURE REVIEW 

Geopolymer Theory 

Geopolymer development 

To date, the increasing demands to reduce the use of Portland cement (PC) in concrete and the 

increasing environmental issues caused by CO2 which is from production of PC have accelerated 

the development of geopolymer binder that was a product from the reaction of industrial 

aluminosilicate wastes (e.g., fly ash, slag and metakaolin) and alkali solution (Sumajouw et al., 

2004). As a new type of concrete binder, geopolymer has been recognized as an alternative to 

traditional PC due to its high temperature, acid resistance and environmental benefits (e.g., list 

some environmental benefits). Since Joseph Davidovits coined the term “geopolymer” in 1978, its 

properties and uses have been explored by many scientific and industrial researchers (Davidovits 

1994).  

Geopolymers are characterized by a three-dimensional Si-O-Al structure. They are able to 

provide ceramic and zeolitic properties not normally present in PC (McDonald and Thompson 

2005). Geopolymer develops through several distinct reaction processes from initial pozzolanic 

activation to final microstructure development (Fernandez et al., 2005). The major procedural steps 

in geopolymer formation are 1) dissolution of the aluminosilicate species within a highly alkaline 

environment, 2) polymerization of the dissolved ions into temporary structural gel, 3) precipitation 

of formed hydration products, 4) final hardening of the matrix by excess water evaporation and 5) 

the growth of crystalline structures. Fig. 1 illustrates the overall polymerization process in 

geopolymer which can be summarized as three processes: Dissolution, Polymerization and Growth 

(Rangan 2008). Dissolution occurs immediately after the contact of the alkaline solution and the 
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pozzolanic materials and creates ionic interface that facilitate the breaking of covalent bonds 

among silicon, aluminum and oxygen atoms. Similar to PC, this process generates rapid and 

intense heat (Fernandez et al. 2006). The rate of dissolution correlates to the amount and 

composition of the activating solution (Xie and Xi 2001). The polymerization process involves a 

rapid chemical reaction in an alkaline solution on Si-Al species, resulting in a three-dimensional 

polymeric chain-and-ring structure consisting of Si-O-Al-O bonds (Skvara et al. 2006). The 

formed gel contains alkaline cations that compensate for the charge deficit associated with the Al-

for-Si substitution (Xie and Xi 2001). An intermediate, Al-rich phase is first formed, which then 

gives way to a more stable, silicon-rich, three-dimensional gel that is dependent upon curing 

conditions and activator type (Fernandez et al. 2006). During this process, the slow growth of 

crystalline structures become evident as the nuclei of the polymerized gel reaches critical size. The 

degree of crystallinity relates to the rate at which precipitation occurs. It should be noted that the 

fast reactions between alkali and pozzolanic materials do not allow enough time for the growth of 

a well-structured crystalline environment. Therefore, most hardened geopolymer is referred to as 

zeolitic precursors rather than actual zeolites. The final product of geopolymerization is an 

amorphous, semi-crystalline cementitious material (Petermann et al. 2010). 

Geopolymer Constituents 

Pozzolanic materials 

Fly ash 

Most available pozzolanic material around the world is fly ash, which is by-product obtained 

from the combustion of coal during industrial processes like power generation (Reference). It is 

considered one of the most important source materials for geopolymer binder (Khale et al. 2007). 

Most fly ashes from the combustion of coal are made up of an inhomogeneous mix of 
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aluminosilicate and silica glasses plus small amounts of crystalline materials including mullite, 

quartz, hematite and magnetite (Song et al. 2000). Particle size distribution and particle fineness 

are the physical characteristics of fly ashes as shown in Fig. 2, most strongly governing their 

reactivity (Krizan et al. 2002). The presence of highly reactive silica in the fly ash increases the 

formation potential of the aluminosilicate gel, which contributes mechanical strength of 

geopolymer. The aluminum content of fly ash material is critical to the hardening properties of a 

geopolymer binder and believed to be the critical factor for setting (Rangan 2008).  

Slag 

Another pozzolanic material used to synthesize geopolymer is ground granulated blast furnace 

slag (GGBFS) resulting from rapid water-cooling of molten steel. It has been used extensively in 

the concrete industry as a cementitious material since it is relatively inexpensive to obtain, highly 

resistant to chemical attack and maintains excellent thermal properties (Dan and Janotka 2003). 

Major components of the slag product include SiO2, CaO, MgO and Al2O3. Alkali activation yields 

a highly amorphous calcium silicate hydrate (C-S-H) gel product with high aluminum content 

(Pacheco et al. 2007). This product is referred to alkali-activated slag (AAS). While shrinkage in 

AAS pastes is more common than in PC, it maintains a much higher ultimate strength by 

comparison. 

Alkaline activator 

NaOH 

The NaOH is a commonly employed alkaline activator to provide OH-. Its concentration in 

activator solution determines the geopolymer paste properties. While high NaOH concentrations 

accelerate chemical dissolution, it depresses ettringite and CH formation during binder formation 

(Khale et al. 2007). While a higher concentration of NaOH promotes higher strength at early stages 
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of reaction, the strength of activated geopolymer can be compromised due to excessive OH-
 in 

solution causing non-uniform morphology of the final products (Khale et al. 2007). It is found that 

geopolymer activated with NaOH develops greater crystallinity thus improving stability in 

aggressive environments of sulfates and acids (Criado et al. 2007). There is a linear relationship 

between NaOH concentration and the heat generation (Chareerat et al. 2006). 

Na2SiO3 

Sodium silicate is manufactured by fusing silica sand (SiO2) with sodium carbonate (Na2CO3) 

at temperatures in excess of 1100ºC and dissolving the product with high pressure steam into a 

semi-viscous liquid referred to as “waterglass” (Fernandez et al. 2005). Waterglass is rarely used 

as an independent activating unit because it does not possess enough OH- as activation potential to 

initiate pozzolanic reaction alone. Rather, it is commonly mixed with NaOH as a fortifying agent 

to enhance alkalinity and increase overall strength. The most utilized alkaline activator in 

geopolymerization is a combination of sodium hydroxide and sodium silicate (Kong et al. 2008). 

Feng et al. (2004) asserted that soluble silicates reduce alkali saturation in pore solutions and 

promote greater inter-particle bonding with geopolymer binders. As well, the presence of Na2SiO3 

improves interfacial bonding between aggregates and geopolymer mortars (Feng et al. 2004).  

Geopolymer proportioning 

Geopolymer proportioning is very complex due to various parameters need to be considered. 

Activator concentration (Concentration) 

The alkaline activator concentration (i.e., solute mass concentration) is the most critical factor 

for successful geopolymer formation and the evolution of high compressive strength. An increase 

in concentration increases the reaction rate and degree leading to a less porous and stronger 
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geopolymer for the fly ash-based systems (Chareerat et al. 2006). Consequently, a higher alkaline 

concentration increases setting time and delays polymer formations since excessive ion presence 

limits polymer mobility and potential to interact with available reactive species. Furthermore, the 

increase in alkaline concentration in the paste mix increases the degree of hydration reactions 

(Pacheco et al. 2007) and reduces pore volumes improving microstructural properties of the C-S-

H product. Thus, concentration must be addressed clearly in a geopolymer mix design. 

SiO2 / Na2O mole ratio (Module) 

Module is a highly significant parameter in geopolymer design. It is well known that variations 

in Module significantly modify the degree of polymerization of the dissolved species in the 

reacting solution, thus determining the mechanics and overall properties of the synthesized gel 

product (Rangan 2008). Higher percentages of soluble silic in geopolymer systems retard 

dissolution of fly ash due to increased saturation of the ionic silica species and promote the 

precipitation of larger molecular species, resulting in a stronger gel with an enhanced density (Zuda 

et al. 2006). The presence of soluble silica directly influences the reaction kinetics and the rate of 

crystallization as well as promoting gel formation, which is beneficial for strength development. 

A module range of 1.0-2.0 was recommended by Fernandez (Fernandez et al. 2005). Drying 

shrinkage is a direct result of hydration heat and increases with increased module and dosage of 

waterglass activators (Fernandez et al. 2007). 

Activator to fly ash mass ratio (L/F) 

The ratio of a selected activator-to-pozzolanic-material (fly ash) appeared to be the most 

critical parameter regarding general strength and fire resistance of the geopolymer paste 

(Fernandez et al. 1999). The L/F is recommended to be maintained in the range of 0.30 to 0.45 
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(Skvara et al. 2006). High compressive strengths were obtained up to 70 MPa when L/F was lower 

than 0.43 (Krizan et al. 2002).  

Curing temperature and time 

As with traditional PC, geopolymer responds better to heated curing methods. Previous work 

has demonstrated that curing time and temperature greatly affect the mechanical development of 

geopolymer binders. However, a temperature threshold exists, beyond which the strength gain rate 

is extremely slow (Rangan 2008). Temperatures in the range of 50-80°C are widely accepted 

values used for successful geopolymer hydration. Both curing temperature and curing time directly 

influence final compressive strength values of geopolymer specimens. Elevated temperature 

curing methodologies were evaluated on the use of steam- or dry-heat, the test data shows that dry-

curing yields a compressive strength increase of 15% over the steam-curing methods (Skvara et 

al. 2006). Geopolymer sets rapidly and attains a significant percentage of its total compressive 

strength within the first few hours of reaction (Khale et al. 2007). However, the strength increase 

for specimens cured beyond 48 hours was not significant. Testing has shown that compressive 

strength values of 60 MPa can be achieved after only five hours at 85ºC (Khale et al. 2007). Longer 

curing times will increase the strength of geopolymer, but the strength is developing at a much 

slower rate as time progresses due to alkaline saturation and product densification (Skvara et al. 

2006).  

Characterization of Geopolymer Properites  

Fresh properties of geopolymer mixture 

The fresh properties of geopolymer mixtures, (e.g., setting time, flowability and calorimetry) 

are very significant for the practical application of binder materials (Zivica et al., 2014). While 
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these fresh properties of PC pastes have been investigated in depth, they have not yet been explored 

for geopolymer pastes. Consequently, research to understand the fresh properties of geopolymer 

pastes in relation to the effect of the activator nature is needed. The significant properties of fresh 

geopolymer mixtures are: setting time, flowability and calorimetry, depending strongly also on the 

quantity of activator added. This quantity significantly influences the workability of the mixtures, 

their setting time and calorimetry, but even the mechanical properties of the hardened mixture 

(Gourley, 2003; Nicholson et al., 2005; Banfill, 2006). The setting time represents a very important 

property of the fresh geopolymer mixtures influencing the time interval needed for the possibility 

of their placing in situ. Alkaline activator types, concentration of activators, ratio of liquid-to-solid 

and curing temperatures are all relevant in the characterization of geopolymer pastes calorimetry 

and directly influence the degree of reaction observed in a mixed geopolymer paste and either 

enhance or detract from the polymerization process (Williams et al. 2002). 

Setting time 

In ASTM WK27337, a pocket penetrometer is used to measure the setting time of a paste 

mixture. The initial and final setting times are respectively determined as the times required for 

paste to reach 24 kPa and 430 kPa of resistance to penetration of the pocket penetrometer. Rupnow 

evaluated this method for setting time on cement and fly ash paste and concluded that it is a 

convenient approach (Rupnow 2013).   

Flowability 

The flowability of paste can be measured using the mini slump cone in accordance with 

modified ASTM C1611, which is used to describe the rheology behavior of paste. Especially in 

field conditions, the availability and practicability of using a rheometer is limited. In such cases a 

mini slump cone has been proposed by several authors and several empirical relationships (Collins 
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and Sanjayan 1998, Roussel 2006). In their studies, it is shown that the workability of the paste is 

directly related to the spread it attains. Some researchers even proposed a relationship between the 

yield stress and spread diameter for concrete (Roussel and Coussot 2005):  

𝜏 =
7200𝜌𝑔𝑣2

128𝜋2𝐷5                                                                     (1) 

Where v is the volume of paste, 𝜏 is the yield stress, ρ is density of paste, g is the gravity and D 

the spread diameter. The units should be consistent in international unit. 

Calorimetry measurement 

Calorimetry measures heat changes during a chemical reaction such as cement hydration. It 

can be used to assess hydration-related properties, such as setting time, stiffening, and maturity 

according to the recorded temperature-time curve. It can also be used to evaluate the hydration 

kinetics and the geopolymerization process of geopolymer (Yao et al. 2009). It can be performed 

under isothermal conditions on paste in accordance with ASTM C1679. Fig. 3 illustrates the 

typical calorimetric curves of geopolymer and pozzolanic reaction (Yao et al. 2009).  

Hardened properties of geopolymer mixture 

Mechanical properties 

For geopolymer as a novel cementitious material, its mechanical properties including 

compressive strength, tensile strength, flexural strength and bond strength are very important to 

apply in concrete. Its better mechanical properties over PC have been perceived as advantages in 

previous studies (Palacios et al. 2008 and Chindaprasirt et al. 2007). It has been shown that 

compressive strength, flexural strength, and tensile strength of geopolymers increase as NaOH 

solution concentration increases (Zivica et al. 2014).  
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The compressive strength of geopolymer paste havs been investigated following ASTM C109 

by many researchers (Hardjito et al. 2008, Karakoca et al 2014). A tensile strength test is 

commonly used to determine strain-hardening behavior of fiber reinforced engineered geopolymer 

composite (EGC) (Nematollahi et al. 2015). A flexural bending test was carried out to evaluate 

mechanical properties for fabric reinforced geopolymer composite (Alomayri et al. 2014). The 

bond strength between geopolymer and embedded steel, which was essential for geopolymer as a 

binder in concrete, was measured using pullout test (Sarker 2011). Fig. 4 indicates that the bond 

strength of geopolymer concrete is higher than that of PC concrete.  

Shrinkage behavior 

In alkali activated systems, it is thought that there is an increase in drying shrinkage as 

compared to that of Portland cement (PC) due to the pore sizes are comparatively smaller and that 

leads to higher capillary tension as shown in Fig. 5 (Collins and Sanjayan 2000). Fig. 6 shows the 

drying shrinkage measurements taken for various SiO2/Na2O ratios. All samples were observed to 

shrink rapidly during the early stages and plateau was attained at around 50 days. The samples 

with SiO2/Na2O ratios of 1.0, 1.5 and 2.0 are reported to display almost the same trend at later ages 

and the sample with a ratio of 1.0 displayed the most drying shrinkage (Zheng 2009).  

If paste is restrained against drying shrinkage, tensile stress develops and can cause cracks. 

Such shrinkage cracks are widely evident in bridge decks, industrial and parking garage floors and 

highway pavement slabs, that have large thickness and exposed areas (Filho et al. 2005). The 

restrained ring shrinkage test has been used widely to measure such restrained shrinkage, cracking 

time, crack width and shrinkage cracking potential of concrete according to ASTM C1581 (Wang 

2011, Yuan et al. 2011). Many advantages of ring tests include high and nearly constant restraint, 

its applicability to both mortar and concrete samples, and lower effects of geometry and boundary 
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conditions due to symmetry (Tang et al. 1996). The theory of restrained ring testing has been 

addressed (Hossain and Weiss 2006). The apparatus of restrained ring specimens is shown in Fig. 

7.  Rare literature reports use the restrained ring test to investigate the free shrinkage of geopolymer 

paste (Wang et al. 2012).  

Predictive models on geopolymer 

Mix design of geopolymer is very complicated because it involves many parameters. On the 

other hand, artificial neural networks (ANN) have been successfully utilized to develop predictive 

models of setting time, compressive strength and slump for PC concrete (e.g., Dias 2001, Suryadi 

et al. 2011, Diab et al. 2014). Table 1 presents the comparison between ANN predicted values and 

experimental values on compressive strength of geopolymer (Yadollahi et al. 2017). It can be seen 

that ANN-established model predicted the compressive strength of geopolymer well. 

Geopolymer Application 

Engineered geopolymer composite 

Fibers are broadly used to modify the brittle behavior of plain cementitious materials (Li and 

Wu 1992). Engineered cementitious composites (ECC) are a special class of high performance, 

fiber-reinforced cementitious composites that utilize a small amount of fibers (typically 2% by 

volume) and exhibit very high tensile strain capacity of up to 6% (Li and Kanda 1998).  

Recently, feasibility studies have been undertaken to develop geopolymer-based ECCs with 

complete replacement of the PC binder with fly-ash-based geopolymer binders. These engineered 

geopolymer composites (EGCs) demonstrated strain-hardening behavior in tension (Lee et al. 

2012). The developed fly-ash-based EGC exhibited very high tensile strain capacity (up to 4.3% 

on average), but low to moderate compressive and tensile strengths (17.4-27.6 MPa and 2.9-3.4 
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MPa, respectively), which may limit its widespread application in the construction industry due to 

low ability to withstand load without failure or plastic deformation (Ohno and Li 2014).  

General applications 

One motivator for adopting geopolymer binder is its ability to resist sulfate and other chemical 

intrusions and maintain excellent thermal loading capacities. The tests reported by Sumajouw et 

al. (2004) revealed that geopolymer concretes possess high compressive strength, undergo very 

little drying shrinkage and exhibit moderately low creep. Their data also indicate that geopolymer 

concretes possess excellent resistance to sulfate attack, resulting in a promising construction 

material for some harsh environments (Sumajouw et al. 2004). 

Generally, the properties of geopolymers significantly depends upon the silica/alumina ratio, 

thus the applications of geopolymer are also related to this ratio. It is evident that the applications 

of geopolymer are broad associated with Si/Al ratio as shown in Table 2 (Jaarsveld et al. 2003). 
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Table 1. Comparison between predicted and experimental compressive strength (Yadollahi et al. 

2017) 

  

 

Table 2. Applications of geopolymer associated with the inherent Si/Al ratio (Jaarsveld et al. 

2003) 

 

 



www.manaraa.com

18 
 

 

Figure 1. Geopolymer development model (Rangan 2008)? 

 

 

Figure 2. Microscopic image of raw fly ash (Krizan et al. 2002) 
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Figure 3. Typical calorimetric curves of geopolymer and pozzolanic reaction (Yao et al. 2009) 
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Figure 4. Bond strength versus compressive strength (Sarker 2011) 

 

 

 

 

Figure 5. Drying shrinkage of concrete made with Portland cement (OPCC) and geopolymer 

(AASC) (Collins and Sanjayan 2000) 
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Figure 6. Drying shrinkage of geopolymers with varying Module (Zheng 2009) 

 

 

 

Figure 7. Restrained ring specimen apparatus (Hossain and Weiss 2006) 
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CHAPTER 3. OPTIMIZATION OF MIX DESIGN PARAMETERS ON THERMAL, 

SETTING AND STIFFENING BEHAVIORS OF HIGH-CALCIUM FLY ASH 

GEOPOLYMER 

Yifeng Ling, Kejin Wang, Xuhao Wang, Sudong Hua, Scott M. Schlorholtz 

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames 

IA 50010 

Abstract 

In this study, the effects of critical design parameters, such as SiO2/Na2O molar ratio (Module), 

concentration of solute in alkaline solution (Concentration), liquid-to-fly-ash mass ratio (L/F), 

temperature and elapsed time of curing on setting time, compressive strength, and heat of hydration 

behaviors of high-calcium fly ash geopolymer mixtures were investigated. Results indicated that 

increasing Module accelerated setting time, but reduced strength, total heat generation, reaction 

time and geopolymerization peak time. As Concentration increased, setting time for mixtures of 

1.0 and 1.5 Modules became longer, but shorter for mixtures with 2.0 Module. Make this its own 

sentence: while compressive strength, total heat, terminated time and peak time increased. 

Modules less than 1.5, Concentrations between 40% and 50%, L/F ratios less than 0.40, and higher 

curing temperature (such as 50°C) were preferred to synthesize a geopolymer system using high-

calcium fly ash in order to obtain excellent strength and workable setting time. 

 Key words: Geopolymer, Fly ash, Early age performance, Optimization of mix design 

parameters 

 



www.manaraa.com

23 
 

Introduction 

The increasing environmental threats caused by CO2 produced during manufacture of Portland 

cement have promoted the development of geopolymer binders that were activated from alumina-

silicate source materials (e.g., fly ash, slag and metakaoline) by alkaline solutions (Sumajouw et 

al 2004, Davidovits 1994). On the other hand, the rising demands to reduce the cost of binder in 

concrete desiderate an alternative source of Portland cement. Geopolymer binders, in this case, 

can be a best fit.  

Coal combustion waste fly ash has been studied and known as a readily available alumina-

silicate material to meet the demands due to its rich in Si and Al.  It is in nature of sphere shape 

with a larger surface area and smaller specific gravity than Portland cement. The classification of 

fly ash in accordance with chemical and physical properties can be found in ASTM C618. 

Geopolymerization is the condensation of aluminum and silicon precursor species that are 

dissolved in alkaline solutions to attain polymers in three-dimensional Si-O-Al network. The fly-

ash-based geopolymer concrete generally yields higher strength compared to a similar 

proportioned Portland cement concrete, especially with a longer curing time (Babaee and Castel 

2016).  

Research in recent years has applied alkali silicate solutions to activate fly ash to form 

geopolymer (Kong and Sanjayan 2010). It has been shown that silicate activation increases the 

dissolution of fly ash and gives rise to mechanical properties (Rees et al. 2004). A solution of 

sodium silicate (Na2SiO3) and sodium hydroxide (NaOH) is the most commonly recommended 

alkaline activator (e.g., Hardjito et al. 2004, Wongpa et al. 2010). The ratio of SiO2/Na2O mole 

module (i.e., Module) and the concentration of activator (i.e., Concentration) are critical 

parameters in designing activators. It has been recommended that Module from 1.0 to 2.0 be 
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employed with commercial fly ash (Fernandez et al 2005). 30%-50% Concentration were usually 

selected to synthesize geopolymer (References). While it is generally accepted that a higher 

Concentration will result in higher strength capabilities, there seems to be an optimum limit for 

each activator type, such that crossing this limit results in the reverse affect (Khale and Chaudhary 

2007). The alkaline liquid-to-fly ash ratio (by mass) is recommended to be maintained in the range 

of 0.30 to 0.45 (Skvara et al. 2006). The biggest challenge of fly ash geopolymer is the retardation 

of strength development and many researchers have focused on adjusting design parameters and 

curing conditions to improve strength development (e.g., Kovalchuk et al. 2007, Sathonsaowaphak 

et al. 2009, Jo et al. 2015, Chareerat et al. 2006, Song 2007, Krizan and Zivanovic 2002). For 

example, because of the slow reactivity of fly ash at ambient curing temperature, elevating 

temperature is a way to increase the kinetics energy and degree of the reaction, thus increasing the 

density of the pore structure and improving the mechanical properties of geopolymer (Kovalchuk 

et al. 2007). Calorimetric characterization provides real-time heat generation during the whole 

process of geopolymerization that cannot be achieved by other intermittently recording methods 

in studying the rate and the extent of geopolymerization (Khale and Chaudhary 2007, Provis et al. 

2005, Provis et al. 2005). A relatively small number of investigations on isothermal measurements 

for alkali–fly ash reaction systems have already been performed (Vijayakumar 2013). Those 

investigations showed that calorimetric analysis is a powerful method to characterize the 

geopolymerization process. However, little research has been focused on assessing the setting and 

thermal behaviors of fly ash geopolymer to extrapolate strength development of alkali-activated 

high-calcium fly ash geopolymer binders. The research in this chapter is sought to provide a 

comprehensive study on critical mix design parameters, such as Module, Concentration, L/F and 

curing condition, to seek an optimal strength development strategy of geopolymer binders. 
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Materials and Test Methods 

Materials 

An ASTM C618 Class C fly ash from Ash Grove with a specific gravity of 2.52 and fineness 

of 419.6 m2/kg was used as a polymerizing material in this research. Where was the fly ash 

obtained from? Table 1 summarizes the chemical composition of the fly ash obtained from X-ray 

fluorescence (XRF) test. The activator was a combination of NaOH and Na2SiO3 where solid 

NaOH was added to an aqueous solution of Na2SiO3 (known as waterglass or liquid glass). 

Specifications for these reagents are listed in Table 2. 

Mix design 

Mix parameters were SiO2/Na2O mole ratio (Module) of 1.0, 1.5 and 2.0, solute (NaOH + 

Na2SiO3) mass percent in alkaline solution (Concentration) of 30%, 40% and 50% and liquid to 

fly ash mass ratio (L/F) of 0.33, 0.40, 0.50 and 0.60 as presented in Table 3. Based on the 

specification of sodium silicate solution, the initial SiO2/Na2O Module is 2.58. Adding NaOH solid 

to adjust this ratio was the approach to obtain the designed Modules. Deionized water dilution was 

also applied for the Concentration acquirement. Deionized water was also used as a reference 

activator source. Therefore, the design matrix contains nine alkali solutions with varying Modules, 

Concentrations and deionized water as well as 10 types of activator. They were prepared to mix 

with a single source fly ash with L/F of 0.33, 0.40, 0.50 and 0.60 for setting behavior and strength 

development investigations. 

It is noted that all samples are marked as A-B-C-D in the following section for simplicity. (A: 

Module, B: Concentration in %, C: L/F, D: temperature). If solution is water, A and B equal to 0 
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and 0%, respectively. For instance, 1.0-40%-0.4-50 represents the geopolymer sample activated 

by the alkali solution of 1.0 Module, 40% Concentration with 0.4 L/F curing at 50°C. 

Test methods 

Mixing  

Fly ash was mixed with the ten activators following designated L/F. The mix procedure was 

in accordance with ASTM C305 and used a Hobart mixer similar to a hydrated cement paste 

mixture. The fresh mixtures were used to further investigate setting behavior and strength 

development.  

Setting time 

Rupnow evaluated three common test methods for setting time on cement and fly ash paste, 

including Vicat needle, Gillmore needle and pocket penetrometer (Rupnow 2013). The pocket 

penetrometer was selected to measure setting time in this study due to its simplicity and 

comparable results to other techniques as present in Fig. 1. In this test, penetration resistance was 

measured to evaluate the setting and hardening behavior of a geopolymer mixture. The effects of 

Module, Concentration and L/F on setting time were determined in accordance with ASTM 

WK27337. A pan of fresh paste was cast to perform setting time measurement at 23℃. Time 

interval of penetration was controlled at five minutes. At each time point, the pocket penetrometer 

was pressed into paste until the tick mark reached the paste surface and the scale from the bottom 

of ring was recorded as penetration resistance. The reading was done within 15 seconds sooner or 

later than the time point. The setting time test stopped only if the penetrometer reading was greater 

than 4.5 tons per square foot. The initial and final setting times were respectively determined as 

the times required for paste to reach 24 kPa and 430 kPa of resistance to penetration of the pocket 

penetrometer. 
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Compressive strength 

After mixing, 50.8 mm cubes were cast in brass molds. The specimens were compacted with 

two-layer placing and tamping as described in the ASTM C109. The specimens and molds were 

then wrapped with vinyl sheeting to prevent moisture loss. Sixteen cubes were cast for each mix 

where two cubes were cured in a sealed bag stored in a preset oven at a specific curing temperature, 

i.e., 23℃ and 50℃ and tested at different ages (i.e., 1 day, 3 days, 7 days and 28 days, 

respectively). The compressive strength tests were performed in accordance with ASTM C109.  

Isothermal calorimetry 

The isothermal calorimetry device consists of a temperature control chamber and a calorimeter 

containing eight separate channels that each hold a sample during the test (Fig. 2). A detailed 

description of the isothermal calorimetry apparatus can be found elsewhere (e.g., Wang et al. 

2007). The main route for heat exchange between the sample and the surroundings is through the 

heat flow detector. The heat flow, caused by the temperature difference across the sensor, creates 

a voltage signal proportional to the heat flow. This voltage signal is corrected by the reference and 

converted to the rate of heat evolution by applying the calibration factor. In this research, the 

effects of Module, Concentration, L/F and temperature on dynamic process of geopolymerization 

were evaluated by isothermal calorimetry. The heat generation process of the geopolymer activated 

by the the activators (see Table 3) was tested at both 23℃ and 50℃ by using the isothermal 

calorimeter. In order to maintain the whole reaction proceeding under constant temperature, the 

materials (fly ash and activator) were weighed in cups with different L/F and conditioned to the 

internal temperature of equipment at 23℃ or 50℃ prior to mixing. To minimize the heat loss 

during mixing, fly ash and activator were manually mixed until uniform paste formed 

(approximately two minutes). Then the cups were tightly capped and placed in the calorimeter 

http://www.sciencedirect.com/science/article/pii/S0040603109001907#tbl2
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cells. The test was finished when the measured voltage returned to its initial value that indicated 

the reaction was terminated. A summary flowchart for the experimental procedure is shown in Fig. 

3. 

Results and Discussion 

Setting time 

The pocket penetrometer setting time test was conducted under 23℃ to evaluate consistency 

and unconfined compressive strength of geopolymer mixtures. Fig. 4 reveals the defined initial 

and final setting times in accordance with ASTM WK respectively. As shown in Fig. 4 (a), for 1.0 

and 1.5 Module mixtures, the higher Concentration increases the initial setting time with increased 

L/F up to 0.60. This phenomenon is more apparent at 1.0 Module due to more NaOH content. A 

higher alkaline concentration increases initial setting time since excessive ion presence hinders 

their mobility and potential to interact with available reactive species (Khale and Chaudhary 2007). 

However, with respect to 2.0 Module mixtures, the initial setting time is decreasing with increased 

Concentration for all L/F ratios. it is most likely due to higher percentages of soluble silica in 

geopolymer systems retards dissolution of fly ash, while increased Concentration may help the 

dissolution of Si4+ and Al3+ ions from fly ash (Zuda et al. 2006, Rattanasak and Chindaprasirt 2009, 

Chindaprasirt et al. 2012), which improved the geopolymerization and thus shortened the initial 

setting time. The final setting time was exactly the same trend as initial setting time. The longest 

initial and final setting times 3900 and 4400 mins, respectively, can be observed in the mixture of 

1.0-50%-0.6-23.  

The geopolymer mixtures with 2.0 Module seems to set tremendous faster than 1.0 and 1.5 

Module mixtures as shown in Figs. 4(a) and (b). The reduced setting times can be the result of 
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improved dissolution of the fly ash into alkaline liquid that is leading to improved polymerization 

and hardening of the gel phase (Temuujin et al. 2009). Atiş et al. (2009) and Topark et al. (2014) 

concluded similarly that setting times of liquid sodium silicate and sodium hydroxide activated 

paste reduced with increased silica Module and solute Concentration. In contrast, setting was 

controlled by the presence of calcium, and the high Concentration inhibits the dissolution of 

calcium to the system and thus setting was delayed (Chindaprasirt et al. 2012). The setting time of 

alkali-activated mixture is longer than the mixture without alkali solution. Moreover, as the L/F 

ratio increases, the setting times of geopolymer mixture are also increased. The similar trend can 

be observed for akali-activated slag paste (Yang et al. 2012). 

Compressive strength 

In order to take an overall evaluation of parameters on compressive strength for geopolymer 

mixtures, the results of compressive strength are presented in Figs. 5 to 7 including reference 

mixtures. 

It can be observed that the geopolymer mixtures with 50% Concentration exhibit highest 

compressive strength at all testing ages. It reveals that, higher Concentration of alkali solution 

improves compressive strength of geopolymer mixtures at certain module, L/F, curing temperature 

and time because of sufficient OH-. An increase of Concentration promotes the reaction rate and 

degree leading to a less porous and stronger geopolymer system. It may therefore result in an 

increased volume of smaller pores and lower total porosity for the fly ash-based systems, thus 

increasing strength of the geopolymer mixtures (Fernandez and Palomo 2005).  

The L/F is also effective in changing the compressive strength of the geopolymer mixtures as 

shown in Figs. 5 to 7. For example, it can be observed in Fig. 5 that when the L/F increases from 
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0.33 to 0.60, a decreased compressive strength over 40 MPa can be derived with 1.0 Module, 40% 

Concentration, curing at 50℃ at 28 days. This effect seems to be similar to how hydraulic Portland 

cement paste with higher water-to-cementitious-materials ratio can yield a reduced compressive 

strength. In addition, the rates of strength development strength decreasing rates are higher when 

Concentrations are 40% or 50%, regardless of Module because excessive activator solution brings 

superfluous water or deficient alkali reaction to weaken bonding and reduce mechanical properties 

(Yang et al. 2012). 

In general, higher curing temperature resulted in increased compressive strength for 

geopolymer mixtures as observed in Figs. 5 to 7 for various Modules. Higher curing temperature 

is more effective on strength gain at any age with the addition of activator. The strength gain can 

be ten times higher at 50℃ than that was cured at 23℃, e.g., the geopolymer mixture with 0.33 

L/F, 30% activator Concentration, and at the curing age of 1 day. It is likely attributed to there was 

no sufficient time and temperature to remove the unconjugated water, and the geopolymer slurries 

were still gelatinous and moist for early age, while the initial geopolymerization reaction was easy 

to occurred at 50℃ curing condition with a larger reaction rate that developed strength quickly 

(Hanehara et al. 2001). Higher curing temperature increases the kinetics energy and degree of the 

reaction that produces the geopolymer with a stronger Al-Si-O network (Petermann et al. 2010). 

The only exception can be observed that there is no dramatic increase in strength at 50℃ compared 

to 23℃ curing temperature for geopolymer mixtures without adding activators, i.e., 0% activator 

serving for geopolymerization reaction, up to 7 days. However, the higher curing temperature can 

accelerate the pozzolanic reaction of fly ash system yielding an increased strength gain at 28 days. 

It can also be observed that longer curing time improved the polymerization process resulting in 
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higher compressive strength with the addition of activator at various Modules as shown in Figs. 5 

to 7.  

When considering Module effect on strength development, Figs. 5 to 7 should be compared. 

In general, a lower Module seems to achieve a higher compressive strength with the constant 

Concentration, curing temperature, L/F ratio and curing age. For example, a mixture of 1.0-50%-

0.33-50 had the highest strength (about 76 MPa at 28 days) compared to 1.5-50%-0.33-50 and 2.0-

50%-0.33-50 mixtures, which had strengths of 60 MPa and 50MPa respectively. It is well known 

that Module can significantly modify the degree of polymerization of the dissolved species in the 

alkaline/silicate solution, thus determining the mechanics and overall properties of the synthesized 

gel product (Rangan 2008). Higher compressive strength can be observed in geopolymer mixture 

of lower Module due to more OH- taking part in geopolymerization, generating glassy phases. 

Higher percentages of soluble silica in geopolymer systems retard dissolution of the fly ash due to 

increased saturation of ionic silica species and promote the precipitation of larger molecular 

species, resulting in a stronger gel with an enhanced density (Zuda et al. 2006). The presence of 

soluble silica directly affects the reaction kinetics, the rate of crystallization, and promotes a Si-

rich gel formation which is responsible for material strength development. 

Heat generation 

The heat generation of geopolymerization was evaluated by isothermal calorimetry test. The 

total heat generation, rate of heat generation, terminal time and geopolymerization peak heat and 

time were determined from the calorimetry curves. Fig. 8 shows the typical heat evolution of the 

hydraulic cement paste hydration process compared to that of a 2.0-40%-23C geopolymer mixture 

with different L/F ratios. 
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In Fig. 8(a), the cement hydration typically consists of rapid heat evolution period (stage 1), 

dormant period (stage 2), end of the dormant period (stage 3), slowing of heat generation (stage 4) 

and steady state (stage 5). Unlike cement paste hydration, as shown in Fig. 8(b), the fly ash 

geopolymer hydration has no apparent dormant period. The exothermic geopolymerization peak 

(second peak) occurred right after the first peak, which is associated with the dissolution of fly ash 

into alkali solution. The total heat generation for each L/F is the area within the curve and base 

line, determined by integration from time zero to terminated time of heat generation curve. The 

terminated time is when the heat generation goes back to initial base value, which indicates the 

duration of heat generation. The geopolymerization peak time is defined as the time to reach the 

peak heat of geopolymerization while the geopolymerization peak heat is the maximum heat value 

of geopolymerization peak indicating the geopolymerization degree. The overall heat generation 

characteristics of geopolymer mixtures with different parameters (Module, Concentration, L/F and 

temperature) were investigated by the total heat generation, terminated time, geopolymerization 

peak heat and geopolymerization peak time. 

Fig. 9 exhibits the total heat generation derived from the heat generation curves of mixtures 

with varied Modules, Concentration and L/F ratios curing at 23 and 50℃. Without alkali activation 

(i.e., Module of 0), a slight increase on total heat generation with increased L/F ratio can be 

observed when curing at 23℃ while higher curing temperature of 50℃ results in a decreased total 

heat with increased L/F ratio. It may be attributed to the greater temperature decrease with the 

degree of fly ash hydration (Acquaye 2006). However, with the addition of activators, the higher 

curing temperature leads to an increase in heat generation of geopolymer mixtures. The 50℃ 

external curing temperature provides the extra energy to promote the alkaline reactivity of fly ash.  
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Apparently, the total heat increases with the increased Concentration and L/F at either 23℃ or 

50℃ external curing temperature during hydration. This is due to the increased alkali content 

improving the reaction extent. This trend is apparent at the Module of 1.0 and 1.5, but marginal at 

Module of 2.0 because the high silicate concentration hindered alkali dissolution by reducing its 

saturation, thus reducing the effect from concentration, L/F and temperature (Lee and Van 

Deventer 2004). 

Fig. 10 shows the terminated time of heat generation at varied Module, Concentration and 

temperature. The range of times at which the geopolymerization process terminated varied from 

~20-180 hours. At Module 0, the terminated times of heat generation are ~ 22and ~40 hours at 50 

and 23℃ external curing temperatures, respectively. At the Modules of 1.0, 1.5 and 2.0, increased 

concentration can dramatically extend the termination time. The higher Concentration contains a 

higher amount of soluble silica in geopolymer system that retards dissolution of the fly ash material 

due to increased saturation of the ionic silica species, therefore elongates the geopolymerization 

process (Zuda et al. 2006). It may also delay polymer formation because the excessive ion presence 

limits mobility of ionic silica species and potential to interact with available reactive species 

(Khale and Chaudhary 2007). However, the higher Module yields a shortened geopolymerization 

process due to more soluble silicate promoteing the precipitation of larger molecular species (Zuda 

et al. 2006). 

In general, higher temperature is a key thermodynamic and kinetic parameter for gel formation 

and promotes the geopolymerization process (Fernandez et al. 2006). OH- acts as a catalyst for 

reactivity, and metal cations serve to form a structural element and balance the negative framework 

carried by the tetrahedral aluminum (Rangan 2008). Geopolymerization needs more time to 

proceed compared to typical pozzolanic reaction or hydraulic cement hydration due to higher 
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percentage of OH- available in geopolymer matrix that elongates the reaction process (Petermann 

et al. 2010). 

The magnitude and elapsed time of the geopolymerization peak on the calorimetry curve is an 

indicator for the degree of geopolymerization and strength development. The elapsed time to reach 

the geopolymerization peak (i.e., peak time) is presented with varied Modules, Concentrations, 

L/F and temperatures in Fig. 11. The peak time of fly ash-water mixtures increased somwhat with 

L/F increasing for both 23℃ and 50℃ curing while the peak time was slightly delayed for 50℃. 

However, for alkali-activated mixtures, the increased curing temperature accelerates the time to 

reach geopolymerization peak regardless Modules and Concentrations due to high temperature 

speeding up the geopolymerization reaction rate. It can be observed that increasing Concentration 

and L/F dramatically prolong peak time, especially at 23℃ curing temperature with 1.0 and 1.5 

Modules. This is because the higher Concentration and L/F introduced a large amount of OH- that 

restrained the rate of gel formation and geopolymerization. However, higher temperature 

significantly accelerated the geopolymerization process, therefore compensating for the longer 

time to reach the geopolymerization peak. This can be the reason why there is no significant 

prolonged effect on peak time with increased Concentration and L/F at 50℃ curing temperature.  

At Module 2.0, the peak time is marginally affected by Concentration and L/F since the high 

concentration of dissolved silica could prompt geopolymerization thereby greatly reducing the 

effect from Concentration and L/F. It’s also notable that with certain Concentration, L/F and 

temperature, the peak time decreased with an increase of Module. This is likely caused by the 

higher soluble silica Concentration in geopolymer mixtures promoting formation of a Si-rich gel 

as well as crystallization and precipitation of larger molecular species due to increased saturation 

of the ionic silica species. 
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Fig. 12 presents the peak heat of geopolymer derived from isothermal calorimetry curve for 

each geopolymer mixture. The highest peak heat for geopolymer mixtures is 5.5 mw from 2.0-

50%-0.33-50 mixture while the lowest peak heat is 0.3 mw from 1.5-50%-0.6-23 mixture. 

Apparently, the geopolymerization peak heat decreases with increased L/F at given Modules, 

Concentrations and curing temperatures for both water-activated and alkali-activated mixtures. It 

can be attributed to the residue liquid is able to absorb some heat released from geopolymerization 

around peak point. It should be noted that only L/F plays a vital role on peak heat generation. The 

effects from Concentration and Module on peak heat generation of geopolymerization are 

marginal. Similar findings were drawn from Chareerat et al. (Chareerat et al. 2006). Again, higher 

curing temperature boosted peak heat for alkali-activated mixtures due to more intense 

geopolymerization. 

Conclusions  

The various and complex parameters are always a big concern in designing geopolymer mix 

proportions. This comprehensive research work studied a wide range of parameter combinations 

for high-calcium fly ash geopolymer that can guide optimized mix designs for further research and 

applications in concrete. For example, to prepare a geopolymer system using high-calcium fly 

ashto produce a geopolymer concrete with good compressive strength development, heat of 

hydration kinetics and setting behavior of geopolymer mixtures, one should select Modules less 

than 1.5, Concentrations between 40% and 50%, L/F ratios less than 0.40, and higher curing 

temperatures (such as 50℃). The effects of Module, Concentration, L/F, temperature and age time 

on setting time, compressive strength and heat of geopolymerization of fly-ash-based geopolymer 

mixtures are summarized as following:  
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1. Compared to water-activated mixtures, alkali-activated mixtures generally prolong the 

setting time, increase the compressive strength, lower total heat generation, raise the 

geopolymerization peak heat, shorten termination time and geopolymerization peak time 

in calorimetry. 

2. Increasing the Module in geopolymer can accelerate setting time except for high Module 

(i.e., Module 2.0), but with negative effects on strength development, total heat generation, 

termination time of geopolymerization and geopolymerization peak time.   

3. Increased Concentration of geopolymer resulted in prolonged setting time for 1.0 and 1.5 

Module, but retarded setting time for 2.0 Module. In general, higher Concentration, up to 

50% in this case, leads to increased compressive strength and total heat generation, while 

the geopolymerization termination time and peak time are prolonged.    

4. When L/F was increased from 0.33 to 0.60, longer setting time and higher total heat 

generation were observed. Increasing L/F increases the time to reach peak point of 

geopolymerization dramatically (from X to Y). In addition, higher L/F can yield a lower 

strength and peak heat.  

5. The elevated curing temperature of geopolymer improved strength development, increased 

total heat and peak heat generation and decreased terminated time and peak time. 
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Table 1: Chemical Composition of Fly ash 

SiO2 Al2O3 Fe2O3 SO3 CaO MgO Na2O K2O P2O5 TiO2 SrO BaO LOI 

30.7 16 6.8 3.47 28.8 6.74 2.97 0.27 0.64 1.43 0.51 0.7 0.49 

Note: All values in mass %, expressed on an oven-dry basis; LOI is loss on ignition at 1000°C 

 

Table 2: Specification of Sodium silicate solution and sodium hydroxide 

Product Sodium silicate solution (Na2SiO3) Sodium hydroxide (NaOH) 

Company Sigma-Aldrich Fisher Scientific 

Grade Reagent Certified ACS  

Composition Na2O: 10.6%, SiO2: 26.5% NaOH Solid 

Density 1.39 g/ml  2.13g/ml 

Formula (NaOH)x(Na2SiO3)y•zH2O NaOH 

 

Table 3. Design matrix of geopolymer mixtures 

Module Concentration (%) Liquid/Fly ash (L/F) 

0 0 0.33, 0.4, 0.5,0.6 

1.0 30 0.33, 0.4, 0.5,0.6 

1.0 40 0.33, 0.4, 0.5,0.6 

1.0 50 0.33, 0.4, 0.5,0.6 

1.5 30 0.33, 0.4, 0.5,0.6 

1.5 40 0.33, 0.4, 0.5,0.6 

1.5 50 0.33, 0.4, 0.5,0.6 

2.0 30 0.33, 0.4, 0.5,0.6 

2.0 40 0.33, 0.4, 0.5,0.6 

2.0 50 0.33, 0.4, 0.5,0.6 
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Figure 1. Setting time apparatus: Pan (left) and penetrometer (right) 

 

 

Figure 2. Calorimeter apparatus (Wang et al. 2007). 
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Activator

water Alkaline solution

Module 1.0 Module 1.5 Module 2.0

30% 40% 50% 30% 40% 50% 30% 40% 50%

Fly ash

Set time Compressive strength Calorimetry

23oC 23oC and 50oC

Na2SiO3+NaOH

H2O H2O

L/F: 0.33, 0.4, 0.5, 0.6

H2O

1,3,7,28 day curing at 
23oC and 50oC

Figure 3. Flowchart of geopolymer mixture design and tests 
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(a) 

  

(b) 

Figure 4. Setting time results for mixtures (a) initial setting time (b) final setting time  

 



www.manaraa.com

45 
 

 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 (

a)
 0

%
 a

ct
iv

at
o
r 

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
(b

) 
3
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  

(c
) 

4
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  

  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 (

d
) 

5
0
%

 a
ct

iv
at

o
r 

F
ig

u
re

 5
. 
C

o
m

p
re

ss
iv

e 
st

re
n

g
th

 o
f 

m
ix

es
 c

u
re

d
 a

t 
d
if

fe
re

n
t 

te
m

p
er

at
u
re

s 
(M

o
d
u
le

 =
 1

.0
) 



www.manaraa.com

46 
 

   
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(a

) 
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
 (

b
) 

3
0
%

 a
ct

iv
at

o
r 

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(c

) 
4
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
 (

d
) 

5
0

%
 a

ct
iv

at
o
r 

  
  
  
  
  
  
  
  
  
F

ig
u
re

 6
. 
C

o
m

p
re

ss
iv

e 
st

re
n
g
th

 o
f 

m
ix

es
 c

u
re

d
 a

t 
d
if

fe
re

n
t 

te
m

p
er

at
u
re

s 
(M

o
d
u
le

 =
 1

.5
) 



www.manaraa.com

47 
 

   
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(a

) 
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
 (

b
) 

3
0
%

 a
ct

iv
at

o
r 

  
  

  
  

  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
(c

) 
4
0
%

 a
ct

iv
at

o
r 

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  
  
  
 (

d
) 

5
0

%
 a

ct
iv

at
o
r 

  
  
  
  
  
  
  
  
  
 F

ig
u
re

 7
. 
C

o
m

p
re

ss
iv

e 
st

re
n
g
th

 o
f 

m
ix

es
 c

u
re

d
 a

t 
d
if

fe
re

n
t 

te
m

p
er

at
u
re

s 
(M

o
d
u
le

 =
 2

.0
) 



www.manaraa.com

48 
 

 

(a) Cement hydration process (Wang et al. 2006) 

 

   

(b) Fly ash geopolymer hydration process 

Figure 8. Heat generation curves for (a) typical cement paste and (b) the 2.0-40%-23C 

geopolymer mixture  
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Figure 10. Terminated time of heat generation 
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CHAPTER 4. PREDICTION OF STRENGTH, SETTING TIME AND 

GEOPOLYMERIZATION HEAT OF FLY ASH GEOPOLYMER USING ARTIFICIAL 

NEURAL NETWORK 

Yifeng Ling, Kejin Wang, Xuhao Wang 

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames 

IA 50010 

Abstract 

Geopolymer has been studied as an innovative concrete binder due to its comparable properties 

to Portland cement and environmental benefits in recent years. However, the complexity of design 

parameters makes it difficult to systematically approach mix design. The SiO2/Na2O mole ratio in 

alkaline solution (Module), alkaline solution concentration in mass percent (Concentration), 

liquid-to-fly ash mass ratio (L/F), curing temperature and time have been shown to have significant 

influences on the setting time, compressive strength and heat of geopolymerization that are critical 

properties for a concrete binder. In the present study, an artificial neural network (ANN) has been 

applied to establish predictive models for identifying how mix design parameters result in 

favorable fly ash geopolymerproperties (i.e., compressive strength, setting time and heat 

generation). Results show good correlation between the experimental measurements and model 

predictions from ANN for setting time, compressive strength and heat generation properties. The 

effects of geopolymer mix design parameters on setting time, compressive strength and heat 

generation were also discussed in accordance with the prediction profiler generated from ANN 

models. This ANN-derived model can guide property prediction in high-calcium fly ash 

geopolymer mix design.  
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Introduction 

Geopolymer, as an artificial aluminosilicate material containing fly ash, slag and metakaolin 

activated by alkali solution, has become a popular alternative to ordinary Portland cement binder 

in recent years (Rangan 2008, Skvara et al. 2006). The advantages of using such a material are due 

to its excellent acid and fire resistance, low production cost, environmental friendliness and good 

heat resistance properties (Fernandez et al. 2006, Chareerat et al. 2006).  

The biggest challenge of geopolymer mix design is that geopolymer properties (e.g., setting 

time, strength development and heat generation) are rather sensitive to mix design parameters, 

including SiO2/Na2O mole ratio in alkaline solution (Module), alkaline solution concentration in 

mass percent (Concentration), liquid to fly ash mass ratio (L/F), and curing conditions. A Module 

of 2.0 with an 8–16 M in Concentration were recommended as a geopolymer activator. It has also 

been recommended that L/F be maintained between 0.30 to 0.45 (Skvara et al. 2006), while a wider 

range of Module between 1.5 and 3.2 has also been reported (Fernandez et al. 2005). Song found 

that the Concentration for fly ash and slag mixes should range from 2-10 Module (Song 2007). 

Curing temperatures in the range of 50–80℃ are widely accepted values used for successful 

geopolymer hydration (Rangan 2008, Skvara et al. 2006). With these recommended ranges in 

geopolymer mix design parameters, there is a need to assess the sensitivity of applying wide range 

design parameters to seek the best combination for a particular property, such as setting time of 

geopolymerization process, compressive strength development, and heat generation kinetics. In 

addition, a sensitivity study can reduce a large amount of trial and error in experimental work and 

labor intensity.  
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ANN models are inspired by biological nervous systems (Gerven and Bohte 2018). They can 

be trained to perform a particular function by adjusting the weights among elements so that inputs 

lead to specific outputs by continuously comparing with the target (Ozcan et al 2009, Yaprak et al 

2011). Neural networks consist of many simple algorithm units called nodes with dense parallel 

interconnections. Each node receives weighted inputs from other nodes and transfers outputs to 

other nodes by using an activation function. Neural networks can be multilayered and with their 

remarkable ability to derive meaning from complicated or imprecise data, used to extract patterns 

and detect trends that are too complex to be noticed by other computer techniques due to adaptive 

learning (Kewalramani and Gupta 2012). A multi-layer perceptron consists of multiple layers of 

nodes with each layer fully connected to the next one and utilizes a back propagation for training 

the network. The main advantage of ANNs is that one does not have to explicitly assume a model 

form (all calculations are done in ANNs), which is a pre-requisite in the parametric approach. It 

does not need any specific equation form. ANN automatically manages the relationships between 

variables and adapt based on the data used for their training which makes it important to collect a 

large number of experimental data to carry out the modelling of the system.  

Saridemir developed ANN models to predict compressive strength of Portland cement concrete 

with different water-to-cement ratios while Gupta applied sigmoidal activation function in ANNs 

for strength prediction (Saridemir 2009 and Gupta 2013). Diab et al. predicted the initial setting 

time of self-consolidating concrete using ANNs to demonstrate that their utility (Diab et al 2014). 

ANNs have been used to predict cement hydration heat with R2 of 0.999 based upon a large dataset 

(Najafi and Ahangari 2013).  

To date, however, little ANN modeling has been used to predict geopolymer mixture properties 

(Diab et al 2014, Yadollahi et al 2015), possibly due to its complexity of multiple design 
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parameters and lack of sensitivity studies on performance characteristics. In the present study, 

ANN technique has been applied to establish predictive models for the compressive strength, 

setting time and heat generation of fly ash geopolymer. Critical design parameters and the 

feasibility of ANN for predicting aforementioned properties of high-calcium fly ash geopolymer 

are discussed in order to provide an optimization and performance based geopolymer mixture 

design approach.  

Database  

The input data used for predictive model establishment and validation were all extracted from 

the results of laboratory experiment, including setting time determined by penetrometer test in 

accordance with ASTM WK27337, compressive strength measured up to 28 days in accordance 

with ASTM C109/C109M, and heat generation measured through isothermal calorimetry 

complied with ASTM C1702. The experimental test apparatus and method were reported in Paper 

1. The detailed mix design matrix and critical design parameters are listed in Table 1. The setting 

time mentioned in this paper is the final setting time. 

ANN Modeling  

The architecture of the artificial neural network was constructed using a commercial statistical 

analysis tool, JMP Pro 13 (Ge et al. 2012). The Neural platform in JMP implements a fully 

connected multi-layer perceptron with one or two layers. The model launch of ANNs consists of 

five steps as validation method, hidden layer structure, boosting, fitting options and penalty 

method. Based on different ways to divide data sets, the validation methods can be sorted by 

excluded rows, holdback and KFold. Excluded rows uses row states to subset the data as the 

validation set. Holdback randomly divides the original data into training and validation sets. KFold 
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divides the original data into K subsets. In turn, each of the K sets is used to validate the model fit 

on the rest of the data, fitting a total of K models. The model giving the best validation statistic is 

chosen as the final model. This method is the better fit for small data sets, because it makes efficient 

use of limited amount of data. The hidden layer structure can fit in one or two-layer neural 

networks. Increasing the number of nodes in the first layer, or adding a second layer, makes the 

neural network more flexible.  

• The functions applied at the nodes of the hidden layers are called activation functions. In 

JMP interface, there are three types of activation functions which are Linear, Gaussian and 

TanH: A linear activation function cannot be used in neural networks because neural 

networks with a linear activation function are effective only one layer deep, regardless of 

how complex their architecture are. It aims at finding the optimal weights that results in 

minimal vertical effect between the explanatory and target variables, when combine with 

the input. The identity activation function can be simply written as Eq. (1): 

𝑦(𝑥) = 𝑥  

• A Gaussian function is a bell-shaped curve that is continuous. It is used for radial basis 

function behavior or when the response surface is normal in shape. The node output 

(high/low) is interpreted in terms of class membership (1/0), depending on how close the 

net input is to a chosen value of average. The Gaussian function is notated as Eq. (2): 

                                                                  𝑦(𝑥) = 𝑒−𝑥2
                                                                (2) 

• TanH is the hyperbolic tangent function with expression as Eq. (3):   

                                                                 𝑦(𝑥) =
𝑒2𝑥−1

𝑒2𝑥+1
                                                                (3) 



www.manaraa.com

58 
 

Where x is a linear combination of the X variables. 

It is mapped between 0 and 1, where zero means the feature is not there, while one means the 

feature is present. Therefore, nonlinear functions must be continuous and differentiable between 

this range. In this paper, the TanH sigmoid activation function was applied in two hidden three-

node layers to model ANNs due to obtaining well-connected neutral networks.  

Boosting is typically used for building a large additive neural network model by fitting a 

sequence of smaller models. The fitting options specify the model fitting. Transform covariates 

transforms all continuous variables to near normality using either the Johnson Su or Johnson Sb 

distribution. Transforming the continuous variables helps to mitigate the negative effects of 

outliers or heavily skewed distributions. Robust fit trains the model using least absolute deviations 

instead of least squares. This option is useful to minimize the impact of response outliers available 

only for continuous responses. Penalty method is to mitigate tendency of neural networks. Squared 

penalty function was used in modeling because the input variables are all contributing to the 

predictive ability. 

Setting time 

A total of 36 sets of input and output variables for setting time prediction was used. The 

variable input parameters are Module, Concentration and L/F. Their ranges of various input and 

output parameters used in training process are summarized in Table 2. 

The three-fold cross-validation mode (i.e., repeatedly partitioning the original training dataset 

into a training dataset and a validation dataset with fitting option of transform covariates and 

squared penalty method) was implemented for setting time prediction as shown in Fig. 1. One of 

the main reasons for using cross-validation instead of using the conventional validation (e.g., 
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partitioning the data set into two sets of 70% for training and 30% for test) is that there is not 

enough data available to partition it into separate training and test sets without losing significant 

modelling or testing capability (Seni and Elder. 2010). In these cases, a fair way to properly 

estimate model prediction performance is to use cross-validation as a powerful general technique. 

The properties of the neural network simulator used in this study have been shown in Table 3. The 

input layer consists of three parameters, Module, Concentration and L/F, which are the variables. 

The output is setting time for each path from input parameters. In addition, the final network 

contains two hidden layers with 3 nodes in each layer. A nonlinear sigmoid function was employed 

as an activation function for all nodes with full connection adopted between nodes in different 

layers within the network. 

Compressive strength 

273 sets of input data, including the variation of Module, Concentration, L/F, temperature and 

age were selected for compressive strength prediction. Table 4 lists the input and output parameters 

and their ranges for ANN training process. 

The ten-fold cross-validation was chosen to establish the neural network of compressive 

strength using fitting options of transform covariates and robust fit to train with squared penalty 

method as seen in Table 5. The flow chart illustrating the training process of neural networks for 

compressive strength is shown in Fig.2. 

Heat generation of geopolymerization peak 

The ANNs model of heat generation of geopolymerization was created according to 72 sets of 

calorimetry results with a wide range of Module, Concentration, L/F and temperature. The ranges 

of calorimetry data were present in Table 6. 
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The heat generation model is launched using ten-fold cross-validation, transform covariates 

fitting and squared penalty as shown in Table 7. Fig. 3 exhibits the ANN architecture of heat 

generation at geopolymerization peak that was trained by activation functions in layers starting 

from the input parameters. 

Results and Discussion 

In this study, correlation coefficient (R2), root mean square error (RMSE) and mean absolute 

deviation (MAD) are used to evaluate the performances of the multilayer neural networks models 

for setting time, compressive strength and heat generation prediction. They can be mathematically 

determined using Eqs. (4)-(6) and calculated for both training results and validation results.  

 R2 = 
(𝑛 ∑ 𝑡𝑜𝑖 −∑ 𝑡𝑖 ∑ 𝑜𝑖 )2

[𝑛 ∑ 𝑡2
𝑖 −(∑ 𝑡𝑖 )2][𝑛 ∑ 𝑜2

𝑖 −(∑ 𝑜𝑖 )2]
 (4) 

 RMSE = √
1

𝑛
∑ (𝑡 − 𝑜)2𝑛

𝑖=1  (5) 

 MAD = 
1

𝑛
∑ |𝑡 − 𝑜|𝑛

𝑖=1  (6) 

where t is the target value, o is the output value and n is the number of data sets.  

R2, RMSE and MAD are used for investigating data fitting between prediction and 

experimental results. Those R2 closer to 1 and comparatively small RMSE and MAD mean a good 

fitting behavior for prediction model. 

Setting time 

The setting time vs. Module, Concentration and L/F was predicted using ANNs model. The 

results from experimental and predicted values for training and validation sets with R2, RMSE and 

MAD are shown in Fig. 4 and Table 8. The values obtained from the training and validation using 
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the ANNs model correlate well with experimental results. This can also be evidenced by high R2 

values of 0.991 and 0.999, low RMSE values of 112.8 and 34.4, and low MAD values of 66.0 and 

28.1, for training and validation sets, respectively. 

The prediction profiler of setting time as plotted in Fig. 5 demonstrates the effects of Module, 

Concentration and L/F on setting time tendency individually for the selected ranges. L/F seems to 

be the most significant influence parameter for geopolymer setting time according to the 

exponential curve indicating a dramatic increase. As Module varies from 1.0 to 2.0, two inflection 

points at around 1.4 and 1.8 can be observed. Generally, the dissolution and geopolymerization 

are two main processes in geopolymer formation. Although lower Module accelerated dissolution, 

it delayed geopolymerization (Petermann et al. 2010). These two contradictory effects of Module 

may be attributed to the two inflection points. In addition, Concentration has similar effect as L/F 

to setting time, but to a less extent. 

From Fig. 6, the setting time results from experiments are almost overlapped with the predicted 

results from ANNs model. Furthermore, the linear fit of predicted and experimental setting time 

results has a high R2 of 0.992. 

Compressive strength 

The results of geopolymer compressive strength prediction from training and validation 

process using ANNs model with the parameters of Module, Concentration, L/F, curing temperature 

and time are illustrated in Fig.7. Their statistical parameters R2, RMSE and MAD are listed in 

Table 9. Based on these results, the ANNs model for compressive strength prediction in both 

training and validation processes is very accurate and evidenced by the large R2 (0.952 and 0.961) 
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and relatively small RMSE and MAD which indicate the difference between the real value and the 

predicted value. 

The effects of each selected parameter on geopolymer compressive strength is presented in 

Fig. 8 using prediction profiler. It can be observed that as the Module and L/F increase, the 

compressive strength generally decreases. While the increased Concentration, temperature and age 

can improve compressive strength of geopolymer. This observation is the same as the findings 

from the experimental results. It is noted that there is a large drop on compressive strength when 

Module increases from 1.0 to 1.5 while no further deduction can be observed when Module is 

higher than 1.5. This is likely due to saturation of silicon in the mixture (Petermann et al. 2010). 

Furthermore, the high-calcium fly ash geopolymer seems to rapidly gain strength at early age (i.e., 

less than 14 days), but gently increase afterwards. 

The proposed ANNs model can accurately predict the compressive strength with a R2 of 0.94 

by considering the effects of Module, Concentration, L/F, temperature and age (Fig. 9).  

Heat generation of geopolymerization peak  

The heat generation of geopolymerization peak were predicted by ANNs based on the 

experimental data from isothermal calorimetry. The mix design parameters that related to heat 

generation are Module, Concentration, L/F and temperature. The goodness-of-fit model for 

training and validation processes with given R2, RMSE and MAD is shown in Fig. 10 and Table. 

10 which indicates that the ANNs system is able to predict the peak of heat generation during 

geopolymerization quite accurately. 

The prediction profiler of model gives the information for the effects of Module, 

Concentration, L/F and temperature on heat generation as illustrated in Fig. 11. It can be found 
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that the heat generation increases with the increased Module, especially when Module is higher 

than 1.5. This phenomenon seems to comply with compressive strength development which is 

associated with the high soluble silica directly affects the reaction kinetics, the rate of 

crystallization, and promotes gel formation which is responsible for strength development (Zuda 

et al. 2006). The decreasing effects on heat generation from increased Concentration and L/F are 

similar in terms of magnitude while higher curing temperature yields a higher heat generation. 

According to the slope of heat generation and corresponding parameters, Module, L/F and 

temperature are very important parameters in the evaluation of heat generation. 

The Fig. 12 plots the result of goodness-of-fit analysis which evaluates the ability of 

established ANNs model on prediction of heat generation. The correlation coefficient R2 of 0.92 

indicates that this ANN model is appropriate for heat generation prediction of high-calcium 

geopolymer mixtures with selected ranges of design parameters. 

Conclusions 

The present work utilizes ANN to predict setting time, compressive strength and heat 

generation of geopolymerization peak for fly ash geopolymer. The following conclusions can be 

drawn from the previously presented models: 

1. By analyzing predictive models of setting time, compressive strength and heat generation, 

the effects of each geopolymer mix design parameter were clear in quantity using 

prediction profiler which was not apparent from experimental results. For example, the 

setting time has extremums at 1.4 and 1.8 when Module is changing within 1.0 to 2.0. L/F 

is a most effective parameter in setting time. Module over 1.5, affects compressive strength 
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a little while concentration influences compressive strength most. Module larger than 1.5 

significantly impacts the heat generation.  

2. Numerical modeling using ANNs shows an excellent performance to predict geopolymer 

properties. The well correlations between model predicted and laboratory results on setting 

time, compressive strength and heat generation with selected ranges of design parameters 

can be evidenced by high R2 values of 0.99, 0.94 and 0.92 respectively. 

3. The proposed model can be considered as a guidance for high-calcium fly ash geopolymer 

mix design in the future. ANN can be further used for geopolymer study to reduce trial 

and error and assist mix design sensitivity study. 
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Table 1. Parameters in setting time, compressive strength and heat generation 

 

 

Table 2. Input and output variables for setting time 

Variables Parameter Database Range 

Input 

Module 1.0, 1.5, 2.0 

Concentration, % 30, 40, 50 

L/F 0.33, 0.4, 0.5, 0.6 

Output Setting time, min 20~4415 

 

 

  

Property Module Concentration L/F Temperature  Curing  

  (%)  (oC) time (day) 

Setting time 1.0, 1.5, 2.0 30,40,50 0.33, 0.4, 0.5, 0.6 23 - 

Compressive 

strength 

1.0, 1.5, 2.0 30,40,50 0.33, 0.4, 0.5, 0.6 23, 50 1, 3, 7, 28 

Heat generation 1.0, 1.5, 2.0 30,40,50 0.33, 0.4, 0.5, 0.6 23, 50 - 
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Table 3. Properties of neural network simulator in setting time 

Details Selection 

Network architecture Back propagation network 

Validation method 3-fold 

Activation function TanH Sigmoid 

Boosting (number of models/learning rate) 0/0.1 

Fitting options Transform Covariates 

Penalty method Squared 

Number of tours 1 

 

 

Table 4. Input and output variables for compressive strength 

Variables Parameter Database Range 

Input 

Module 1.0, 1.5, 2.0 

Concentration, % 30, 40, 50 

L/F 0.33, 0.4, 0.5, 0.6 

Temperature, oC 23, 50 

Age, day 1, 3, 7, 28 

Output Compressive strength, MPa 1.1~76 
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Table 5. Properties of neural network simulator in compressive strength 

Details Selection 

Network architecture Back propagation network 

Validation method 10-fold 

Activation function TanH Sigmoid 

Boosting (number of models/learning rate) 0/0.1 

Fitting options Transform Covariates and robust 

Penalty method Squared 

Number of tours 1 

 

 

Table 6. Input and output variables for heat generation 

Variables Parameter Database Range 

Input 

Module 1.0, 1.5, 2.0 

Concentration, % 30, 40, 50 

L/F 0.33, 0.4, 0.5, 0.6 

Temperature, ℃ 23, 50 

Output Heat generation at peak, mw/g 0.26~5.42 
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Table 7. Properties of neural network simulator in geopolymerization heat 

Details Selection 

Network architecture Back propagation network 

Validation method 10-fold 

Activation function TanH Sigmoid 

Boosting (number of models/learning rate) 0/0.1 

Fitting options Transform Covariates  

Penalty method Squared 

Number of tours 1 

 

 

Table 8. R2, RMSE and MAD for training and validation results of setting time 

Terms Training Validation 

R2 0.991 0.999 

RMSE 112.8 34.4 

MAD 66.0 28.1 

 

Table 9. R2, RMSE and MAD for training and validation results of compressive strength 

Terms Training Validation 

R2 0.952 0.961 

RMSE 631.0 543.0 

MAD 419.8 355.3 
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Table 10. R2, RMSE and MAD for training and validation results of compressive strength 

Terms Training Validation 

R2 0.943 0.972 

RMSE 0.34 0.23 

MAD 0.20 0.18 
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Figure 1. Neural network architecture of setting time 

 

 

 

Figure 2. Neural network architecture of compressive strength 
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Figure 3. Neural network architecture of heat generation at geopolymerization peak 

 

 

 

Figure 4. Experimental and predicted setting time for training and validation 
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Figure 5. Prediction profiler of setting time model 

 

Figure 6. Predicted setting time vs. experimental setting time 

 

 

Figure 7. Experimental and predicted compressive strength for training and validation 
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Figure 8. Prediction profiler of compressive strength model 

 

 

 

Figure 9. Predicted compressive strength vs. experimental compressive strength 
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Figure 10. Experimental and predicted heat generation for training and validation 

 

 

Figure 11. Prediction profiler of heat generation model 
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Figure 12. Predicted heat generation vs. experimental heat generation 
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CHAPTER 5. THE EFFECTS OF ACTIVATOR AND SHRINKAGE REDUCING 
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Abstract 

In this paper, a summary of several investigations was conducted to establish the influence of 

SiO2/Na2O mole ratio (Module), solute mass concentration (Concentration) and shrinkage 

reducing admixture (SR) on the flowability, compressive strength, drying and restrained shrinkage, 

restrained shrinkage cracking of fly ash geopolymer (FG) pastes. The flowability test was 

conducted by mini slump test. The drying and restrained shrinkage tests were carried out by 

subjecting the specimens to 25℃ temperature and 50% humidity. Drying shrinkage tests were 

performed by measuring length change of specimens with a micrometer and mass loss were 

determined as well. The time and width of cracks of the FG were recorded by using strain gauge 

and crack comparator respectively on restrained shrinkage test. The stress rate of FG during 

restrained shrinkage test was also derived from strain gauge. Finally, based on the obtained results, 

the FG has comparable flowability to PC. SR slightly decreased flowability of PC and FG. It’s 

also found that the magnitude of drying shrinkage of FG was similar to that of PC, however not 

owing to mass loss for FG. The SR significantly reduced the drying shrinkage of FG up to 52% as 

well as PC. The SR decreased the restrained shrinkage up to 16%, delayed the cracking time, 
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reduced the crack width and lowered the cracking potential for both PC and FG. The FG mixtures 

had lower cracking potential than PC. The effect of Module and Concentration on drying shrinkage 

and restrained ring shrinkage was say what it was. 

Keywords: Drying Shrinkage; Restrained ring shrinkage; Shrinkage reducing admixture; Fly 

ash geopolymer 

Introduction 

Fly ash geopolymer (FG), produced by combining fly ash and an alkaline activator, has been 

extensively studied due to its environmental benefits including lower energy requirements and 

lower emission of greenhouse gases with respect to the manufacturing of Portland cement (3-5 

Refs).  Freshly cast Portland cement concrete shrinks primarily due to negative capillary pressure 

that leads to a volume contraction of the cement paste during water evaporation (Cabrera et al. 

1992, Soroushian and Ravanbakhsh 1998). When concrete is restrained against shrinkage, tensile 

stresses develop and can lead to cracking (Ref).  

FG mixtures can be used as an alternative binder material to Portland cement (PC) in concrete. 

The shrinkage behavior of FG mixtures has begun to draw increased attention for its application 

in concrete (list 2-3 Refs). Several studies indicated that FG had lower drying shrinkage than 

ordinary Portland cement (Castel et al. 2016). The drying shrinkage of FG concrete has been shown 

to be comparable to that of ordinary Portland cement concrete of similar compressive strength 

(Deb et al. 2015). Lower shrinkage is believed to be favored in slag-based geopolymer with design 

parameters such as low activator solution/slag ratios, low water glass Modules and low activator 

Concentration (Collins and Sanjayan 2000, Shi 1996).  
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Very few authors, however, have studied the effect of SiO2/Na2O mole module (Module) and 

concentration of solute in alkaline solution (Concentration) on FG shrinkage and corresponding 

cracking behavior. The addition of polypropylene fibers has been reported to slightly decrease 

shrinkage in water glass-activated mortars cured at 50% relative humidity (RH) (Puertas et al. 

2000). Bakharev et al. (2000) studied the effects of different admixtures on shrinkage in water 

glass-activated slag concrete, concluding that gypsum reduces both autogenous and drying 

shrinkage attributed to the formation of expansive phases, such as ettringite. The addition of 

shrinkage reducing admixture (SR) in Portland cement systems can decrease capillary stress in 

pore water, which in turn reduces cement paste shrinkage and shrinkage cracking of cement-based 

materials (Berke et al. 1997, Mora et al. 2003). However, the effects of SR on shrinkage of FG 

mixtures have not been widely reported. This constitutes the subject of the present study. 

Some have studied the drying shrinkage of FG (Crentsil et al. 2013, Kheradmand et al. 2017), 

but very few results have been published with regards to restrained shrinkage of FG, let alone with 

addition of SR. The effectiveness of SR in reducing early-age shrinkage should be evaluated from 

drying shrinkage and restrained shrinkage tests because…?. Reduction in drying shrinkage does 

not necessarily give an indication of the overall reduction in crack tendency, which is a function 

of the plastic shrinkage and the effect of the SR in FG. To establish the cracking tendency, 

restrained shrinkage tests with different mix parameters and SR concentration need to be carried 

out. This study provides insight into the effect of activator (i.e., Module and Concentration) on 

flowability, drying shrinkage and crack behavior of FG paste and the effect of SR on reducing 

drying shrinkage, cracking potential and width comparing with PC as reference for the further 

application of FG. 
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Experimental Program 

Materials 

The chemical composition of ASTM C618 Class C fly ash used in this study is shown in Table 

1 as well as ASTM C150 Type I/II Portland cement for reference.  The Class C fly ash has a 

specific gravity of 2.52 and a fineness of 419.6 m2/kg. The fly ash was alkali-activated with an 

activator (Na2SiO3+NaOH) having a SiO2/Na2O mole ratio (Module) of 1.0 and 1.5 and a solute 

(i.e. Na2SiO3 and NaOH) mass concentration (Concentration) of 40% and 50%. The products 

specifications of Na2SiO3 and NaOH are listed in Table 2. A hexylene-glycol -based SR was added 

at a dosage of 2% (by mass of binder) recommended by manufacture. The admixture was mixed 

with the activator solution. 

Mix proportion and test method 

FG and Portland cement (PC) pastes, with and without SR, were prepared with a liquid to 

binder ratio of 0.33 in a laboratory Hobart mixer following ASTM C305. The mix proportions are 

present in Table 3. 

Flowability  

The flowability of paste samples was measured using the mini slump cone in accordance with 

modified ASTM C1611 test method as shown in Fig. 1. In previous studies, it is shown that the 

workability of the paste is directly related to the spread it attains (Collins and Sanjayan 1998, 

Roussel 2006). The geometry of the plastic mini slump cone is 20 mm in top diameter, 40 mm in 

bottom diameter, and 54 mm in height. Fresh paste was immediately poured into the cone after 

mixing and the cone was lifted as slowly as possible (<0.005 m/s) (Gao and Fourie 2015) to 

minimize inertial effects. After 1 min, the spread of paste flow was measured using a ruler across 
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two perpendicular diameters as exhibited in Fig. 2. The slump flow was conducted three times for 

each mixture in order to obtain an average slump flow, D in mm, from the six measurements. 

Compressive strength 

FG and cement pastes (50.8 mm cube) with three replicates per mixture were prepared in 

accordance with ASTM C109. These specimens were cover with moist cloth and cured at 50±2℃ 

and 55% relative humidity (RH) for 24 h. They were subsequently removed from the molds and 

cured until the testing ages. The compressive strengths of the specimens were measured at the age 

of 3, 7 and 28 days. 

Drying shrinkage 

Six 10×10×60 mm prisms for each mixture were prepared for drying shrinkage measurement, 

stainless steel contact studs were positioned at each end of prisms similar to the test apparatus 

described in ASTM C157 as shown in Fig. 3. Fresh paste was poured into the mold in one layer 

and consolidated for five seconds using a vibration table. The prisms were then sealed and cured 

at 50±2℃ and 55% RH for seven days, then stored at 23±2℃ and 50±4 % RH in the laboratory 

condition. Length change of each prism was measured using a micrometer (Fig. 4) with a 0.01 mm 

accuracy up to 56 days. The initial reading was taken as the measurement after 7 days curing. The 

weight loss of each prism was recorded every time before shrinkage measurement. 

Restrained ring shrinkage 

Three restrained paste rings of each mixture were prepared in accordance with modified ASTM 

C1581. The geometry of the specimen is modified to 150 mm in external diameter, 100 mm in 

internal diameter and 30 mm in height as shown in Fig. 5. The restrained ring shrinkage of FG 

paste was studied using a ring type specimen. The mixtures were placed between the outer ring 

and the inner ring molds made of steel with the same thickness of 5 mm and height of 30 mm. The 
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outer ring and inner ring were fixed on a wooden board by a wooden bar on top with two screws 

tightened as shown in Fig 5.  

In restrained ring tests, pastes were cast around a steel ring that resisted the free shrinkage of 

the paste. The compressive strain accumulation in the steel ring which induces tensile stresses in 

the paste was monitored using two strain gauges that were attached to the two symmetrical 

positions of the inside surface of the inner ring. If the shrinkage-induced tensile stresses are higher 

than the tensile strength of the paste, cracks develop in the paste. The occurrence of a crack in the 

paste was normally indicated by a sudden decrease of the measured compressive strain in the steel. 

The time to cracking is used as an index of the cracking tendency of the paste. The cast ring 

specimens were consolidated by a vibrating table for five seconds and then stored in drying 

condition at 23 ± 2℃ temperature and a RH of 50 ± 4%. After removing the wooden bar and 

releasing outer ring, the lead-wires were connected to modules in data acquisition system (DAS) 

to collect data every minute. This DAS consisted of one battery, one CR1000 data logger and two 

AM16/32 multiplexers as shown in Fig. 6. The specimens were then covered with a polythene 

sheet and wet towel. After 24 hours, the outer steel ring was removed. The top surface was coated 

with paraffin wax as shown in Fig. 7. Strain gauge data were recorded automatically by the data 

logger. The test ended until a sudden decrease in compressive strain in one or both strain gauges 

occurred. 

The time and width of cracking, and the stress rate were obtained from each restrained ring 

and average values were reported for each mixture. Three test specimens for each mixture were 

prepared and the averages of three replicates were exhibited for all results. The time to cracking 

of a ring specimen is used as a principal measure of the tendency of a paste mixture to crack. When 

cracks develop in the paste, the shrinkage induced tensile stress in the paste dissipates, and 
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correspondingly there is a sharp compressive strain drop in the steel ring. The time when the strain 

drops in the steel ring indicates that a crack has formed in the paste. The crack width was measured 

with a visual crack comparator right after crack appeared by taking the average from 3 uniformly 

distributed points along the crack. The stress rate determination is similar to ASTM C 1581. Eq. 

(1) introduces the strain rate factor for tested paste specimen: 

                                                                𝜀𝑛𝑒𝑡 =  𝛼√𝑡 + 𝑘                                                                       (1) 

Where: 

net is net strain, m/m, α is the strain rate factor for each strain gauge on the test specimen, i.e. 

slope of the line, (m/m)/day1/2, t is elapsed time, days, and k is the regression constant. 

The stress rate in each test specimen at cracking is expressed in Eq. (2): 

                                                                      𝑞 =
𝐺|𝛼𝑎𝑣𝑔|

2√𝑡𝑟
                                                                           (2) 

Where: 

q is stress rate in each test specimen, MPa/day, G, a constant for the ring setup (See 2003), is given 

by Eq. (3) (42 GPa), |αavg| is absolute value of the average strain rate factor for each test specimen, 

(m/m)/day1/2, and tr is elapsed time at cracking for each test specimen, days.  

                                                             𝐺 =
𝐸𝑠𝑡𝑟𝑖𝑐ℎ𝑠𝑡

𝑟𝑖𝑠ℎ𝑐
                                                                          (3) 

Where:  

Est is the modulus of elasticity of the steel (189 GPa), hst and hc are the thicknesses of the steel and 

specimen, respectively, and ris and ric are the internal radii of the steel and specimen, respectively. 

Finally, the average stress rate, MPa/day, is determined-based on the stress rates of three tested 

specimens which is an index for cracking potential. 
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Results and Discussion 

Flowability 

Fig. 8 reports the average slump flow values of each mixture. None of the pastes exhibited 

noticeable bleeding during the mini-slump test. The flowability of the geopolymer pastes depended 

on Concentration, Module and addition of SR. In general, mixtures with 2% SR addition howed 

decreased slump flow compared to those without SR. It is most likely due to the hexylene glycol-

based SR used in this study is sticky, therefore increasing viscosity of mixtures and therefore 

yielding a lower slump flow as reported by Bilek (Bilek et al. 2017). Paste mixtures with 50% 

Concentration showed dramatically reduced slump flow while those with 40% Concentration 

showed increased slump flow compared to PC mixture. Chindaprasirt reported the similar results 

and stated that it was attributed to higher Concentration leading to an increased viscosity of the 

mixture (Chindaprasirt et al. 2007). Also, high Module results in a lower slump flow mixture due 

to more silica content promotes the precipitation of larger molecular species resulting in a stronger 

gel with an enhanced density (Zuda et al. 2006). 

Compressive strength 

Compressive strengths of all the mixtures are shown in Fig. 9. SR seems to have marginal 

effects on strength compared to their corresponding mixtures without SR. Mixtures with Module 

of 1.0 at 50% Concentration have the highest strength while higher Module of 1.5 seems to 

adversely affect strength at all ages. Higher Concentration yields a higher compressive strength 

regardless of Module. The effects of Modules and Concentration can be attributed to reaction rate 

and degree that lead to different porosity of products and the trends comply with previous 

(Fernandez and Palomo 2005, Rattanasak and Chindaprasirt 2009). A majority FG paste mixtures 
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have higher strength up to 28 days except the mixtures prepared with 1.5 Module at 40% 

Concentration. 

Drying shrinkage 

Mass loss of the specimens for free drying shrinkage test 

The results of mass loss of paste specimens for all 10 mixtures are presented in Fig. 10. The 

specimens started free drying condition since day 0. It can be seen that the major portion of mass 

loss occurs during the first 14 days. PC-SR displays the least amount of mass loss and 1.5-50% 

shows the greatest amount of mass loss. For the pastes without SR, marked as solid lines, the FG 

pastes have more mass loss than PC paste and the pastes of 1.5 Module lose much more mass than 

those of 1.0 Module. Furthermore, with the same Module, pastes with 50% Concentration has 

more mass loss than 40% Concentration. The same trend of mass loss was found in the pastes with 

SR addition. Additionally, The SR addition reduced mass loss for all pastes. This effect is 

substantial on the pastes with 1.5 Module. 

Free drying shrinkage  

Fig. 11 illustrates the free drying shrinkage test results of PC and FG pastes, with and without 

SR in the course of 56 days. The primary shrinkage occurred in the first 14 days. The lowest drying 

shrinkage exhibited mixture of 1.5-40%-SR and the mixture of 1.0-50 had the highest drying 

shrinkage. Regardless of the addition of SR, the dependence that with decreasing Module or 

increasing Concentration the drying shrinkage increases is evident for FG mixtures. FG mixtures 

have comparable drying shrinkage with PC mixtures for either with or without SR. Comparing the 

specimens between with SR and without SR, the SR was able to significantly reduce the drying 

shrinkage up to 52% for 1.0-50% mixture. The effect of SR on FG mixtures was as strong as PC 

mixture. 
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Comparing the results of drying shrinkage and mass loss, it can be seen that the greater 

magnitude of mass loss did not lead to a higher drying shrinkage. For example, 1.0-50% mixture 

with maximum shrinkage has quite low mass loss among the other mixtures. This indicates that 

the mass loss is no longer the only dominant factor for drying shrinkage of FG mixture. It has been 

proposed that the drying shrinkage behavior of geopolymer is a function of pore size distribution 

and thermodynamic behavior of water in the pores (Shimomura and Maekawa 1997, Shimomura 

1998). Collins put forward that capillary tensile forces set up during drying was a very significant 

factor for the drying shrinkage of geopolymer (Collins and Sanjayan 2000).  

Restrained ring shrinkage 

The restrained ring shrinkage results of PC and FG pastes, with and without SR, are present in 

Fig. 12. It is apparent that 1.0-50% mixture displayed the greatest amount of shrinkage and 1.5-

40%-SR mixture occurred the least shrinkage. With or without SR, it can be found that the mixtures 

with 50% Concentration have more shrinkage than those with 40% Concentration and the 

shrinkage of 1.0 Module mixtures is larger than that of 1.5 Module because the drying shrinkage 

is a direct result of hydration heat and the increase in alkaline concentration and NaOH percentage 

could increase the degree of hydration reaction (Pacheco et al. 2007, Fernandez et al. 2007). The 

SR addition considerably decreases the shrinkage appeared in PC and FG pastes up to 16% for 

1.0-50% mixture.    

Based on the time of a sudden increase of strain, the time of cracking for all mixtures was given 

in Fig. 13. The PC mixture cracked earliest while the 1.5-40%-SR mixture cracked the latest. For 

mixtures with and without SR, PC mixtures cracked earlier than FG mixtures. Moreover, 

increasing Module leads to increased cracking time while increasing Concentration decreased 

cracking time. With the addition of SR, cracking time for all mixtures was postponed. 
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The crack width measured from cracked ring specimens for all pastes is shown in Fig. 14. The 

range of crack width is from 0.2 mm (1.5-40%-SR) to 6 mm (1.5-50%). The mixtures of 50% 

Concentration have wider crack width than PC mixture while those of 40% Concentration exhibit 

narrower crack than PC mixture for both with and without SR. Regarding to the same 

Concentration, the mixtures of 1.5 Module occurred less crack width than those of 1.0 Module. In 

the case of a certain Module, the 50% Concentration had an effect of larger crack width than 40% 

Concentration on FG mixtures. The existence of SR in mixtures apparently reduced the crack 

width, especially for 1.0-50% and 1.5- 50%. 

The cracks from failure ring specimens were measured from photographs (Fig. 15).  Since the 

crack width of replicates is similar, only one crack photo from each mix is presented. The width 

of crack is the average of three replicates for each mix. 

The stress rate of all mixtures, with and without SR, were derived from Eq. (2). Their results 

are illustrated in Fig. 16. The magnitude of stress rate during restrained ring shrinkage indicates 

the cracking potential of pastes according to ASTM C1581. PC and 1.5-40% mixture show the 

highest cracking potential with SR and lowest cracking potential without SR. Without SR, FG 

mixtures exhibited lower cracking potential than PC. At equal Concentration, FG mixtures with 

1.0 Module had higher cracking potential than those with 1.5 Module. However, for a given 

Module, the mixtures of 50% Concentration performed cracking earlier comparing with 40% 

Concentration mixtures. SR addition had a substantial effect towards reducing the cracking 

potential for both PC and FG pastes. This effect on PC was greater than on FG. 

In general, if the tensile stresses caused by drying shrinkage of ring specimen are higher than 

the tensile strength of the pastes themselves, the cracks occur. However, the drying shrinkage is 

not only related to moisture loss but also the tensile force in pore structure for FG pastes (Collins 
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and Sanjayan 2000). Fig. 17 shows the relationship between stress rate and cracking time of all 

paste mixtures. Since the trend of stress rate is the same as that of cracking time, the time to 

cracking could be used to evaluate the cracking tendency of FG pastes. 

Conclusions 

1. FG has comparable flowability to PC. Increased Module and Concentration could reduce 

flowability of FG. SR slightly decreased flowability of PC and FG. 

2. The FG exhibited considerably higher compressive strength than PC, especially for the mixtures 

with 1.0 Module and 50% Concentration. 

3. Mass loss is not the only reason for drying shrinkage of FG. The drying shrinkage of FG was 

similar to that of PC. The drying shrinkage raised with decreasing Module or increasing 

Concentration for FG. The SR significantly reduced the drying shrinkage of FG up to 52% as 

well as PC.  

4. Based on the results of ring shrinkage test, the FG with higher Concentration or lower Module 

have more shrinkage. The SR substantially decreased the restrained shrinkage appeared in both 

PC and FG pastes up to 16%. The PC cracked earlier than FG. An increment in Module or a 

decrease in Concentration brought the cracking forward on FG. With the SR addition, the 

cracking time was delayed for both PC and FG. The FG of 40% Concentration exhibited smaller 

crack than PC. The FG of increased Module or decreased Concentration occurred reduced crack 

width. The existence of SR apparently reduced the crack width, especially for 1.0-50% and 1.5-

50%.  

5. According to stress rate results of restrained ring shrinkage test, the FG mixtures performed 

lower cracking potential than PC and the decreased Module or increased Concentration made 
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them easier to crack. The SR addition lowered the cracking potential for both PC and FG pastes. 

It should be aware that the time to cracking could be used as an index for the cracking tendency 

of FG pastes. 

Acknowledgments 

Authors wish to thank the Robert F, Steffes and Gilson R, Lomboy for their support in materials 

and equipment used in this study. 

References 

ASTM C109/C109M, (2013). “Standard Test Method for Compressive Strength of Hydraulic 

Cement Mortars,” Philadelphia: ASTM International. 

ASTM C150, (2017). “Standard Specification for Portland cement,” Philadelphia: ASTM 

International. 

ASTM C1581/C1581M, (2016). “Standard Test Method for Determining Age at Cracking and 

Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage,” 

Philadelphia: ASTM International. 

ASTM C1611/C1611M, (2014). “Standard Test Method for Slump Flow of Self-Consolidating 

Concrete,” Philadelphia: ASTM International. 

ASTM C305, (2014). “Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and 

Mortars of Plastic Consistency,” Philadelphia: ASTM International. 

ASTM C618, (2018). “Standard Specification for Coal Fly Ash and Raw or Calcined Natural 

Pozzolan for Use in Concrete,” Philadelphia: ASTM International. 

Bakharev, T., Sanjayan, J.G., Cheng, Y.-B. (2000). “Effect of Admixtures on Properties of Alkali-

Activated Slag Concrete,” Cement and Concrete Research 30 (9), pp. 1367–1374. 

Berke, N.S., Dallaire, M.P., Hicks, M.C., Kerkar, A. (1997). “New Developments in Shrinkage- 

Reducing Admixtures,” CANMET/ACI 5th International Conference on Superplasticizers and 

Other Chemical Admixtures in Concrete. Supplementary Papers. Ed. Malhotra, pp. 971–998. 

Bilek, V., Kalina L., and Fojtik, O. (2017). “Shrinkage-Reducing Admixture Efficiency in Alkali-

Activated Slag across the Different Doses of Activator,” Key Engineering Materials 761, pp.  

19-22. 



www.manaraa.com

91 
 

Cabrera, J.G., Cusens.  A.R., Brookes-Wang, Y. (1992). “Effect of Superplasticizers on the Plastic 

Shrinkage of Concrete,” Magazine of Concrete Research  44(160), pp. 149–155. 

Castel, A., Foster, S. J., Ng, T., Sanjayan, J. G., Gilbert, R. I. (2016), “Creep and Drying Shrinkage 

of A Blended Slag and Low Calcium Fly Ash Geopolymer Concrete,” Materials and Structures  

49(5), pp. 1619–1628. 

Chindaprasirt, P., Chareerat, T., Sirivivatnanon, V. (2007). “Workability and Strength of Coarse 

High-calcium Fly Ash Geopolymer,” Cement and Concrete Composites 29(3), pp. 224-229. 

Collins, F., and Sanjayan, J.G. (1998). “Early Age Strength and Workability of Slag Pastes 

Activated by NaOH and Na2CO3,” Cement and Concrete Research 28(5), pp. 655-664.  

Collins, F., and Sanjayan, J.G. (2000). “Sanjayan, Effect of Pore Size Distribution on Drying 

Shrinking of Alkali-Activated Slag Concrete,” Cement and Concrete Research 30 (9), pp. 

1404–1406. 

Crentsil, K.S., Brown, T., Taylor, A. (2013). “Drying Shrinkage and Creep Performance of 

Geopolymer Concrete,” Journal of Sustainable Cement-Based Materials 2(1), pp. 35-42. 

Deb, P.S., Nath, P., Sarker, P.K. (2015). “Drying Shrinkage of Slag Blended Fly Ash Geopolymer 

Concrete Cured at Room Temperature,” Procedia Engineering 125, pp. 594-600. 

Fernandez-Jimenez, A., Garcia-Lodeiro, I., Palomo, A. (2007). “Durability of Alkali-Activated 

Fly Ash Cementitious Materials,” Journal of Materials Science 42(9), pp. 3055-3065. 

Fernandez-Jimenez, A., Palomo, A. (2005). “Composition and Microstructure of Alkali Activated 

Fly Ash Binder: Effect of the Activator,” Cement and Concrete Research 35(10), pp. 1984- 

1992. 

Gao, J., Fourie, A. (2015) “Spread Is Better: An Investigation of the Mini-Slump Test,” Minerals 

Engineering 71, pp. 120–132. 

Kheradmand, M., Abdollahnejad, Z., Torgal, F.P. (2017). “Drying Shrinkage of Fly Ash 

Geopolymeric Mortars Reinforced with Polymer Hybrid Fibres,” Construction Materials, 

10.1680. 

Mora, J., Aguado, A., Gettu, R. (2003). “The Influence of Shrinkage-Reducing Admixtures on 

Plastic Shrinkage,” Materials Construction 53 (271–272), pp. 71–80. 

Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. (2007). “Alkali-Activated Binders: A Review. Part 

2. About Materials and Binders Manufacture,” Construction and Building Materials 22(7), 

pp.1315-1322. 

Puertas, P., Amat, T., Vazquez, T. (2000). “Behaviour of Alkaline Cement Mortars reinforced with 

Acrylic and Polypropylene Fibers,” Materials Construction 50 (259), pp. 69–84. 



www.manaraa.com

92 
 

Rattanasak, U., and Chindaprasirt, P. (2009). “Influence of NaOH Solution on the Synthesis of Fly 

Ash Geopolymer,” Minerals Engineering 22(12), pp. 1073–1078. 

Roussel, N., (2006). “Correlation between Yield Stress and Slump: Comparison between 

Numerical Simulations and Concrete Rheometers Results,” Materials and Structures 39(4), pp. 

501-509. 

See, H. T., Attiogbe, E. K., and Miltenberger, M. A. (2003). “Potential for Restrained Shrinkage 

Cracking of Concrete and Mortar,” Proceedings of the ASTM Symposium on Early-Age 

Cracking of Concrete, Dec. 2003. 

Shi, C. (1996). “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars,” 

Cement and Concrete Research 26 (12), pp. 1789–1799. 

Shimomura, T. (1998). “Modelling of Initial Defect of Concrete Due to Drying Shrinkage,” Proc. 

CONSEC '98 Concrete Under Severe Conditions, Norway vol. 3, pp. 2071-2083. 

Shimomura, T., Maekawa, K. (1997). “Analysis of the Drying Shrinkage Behavior of Concrete 

Using a Micromechanical Model Based on the Micropore Structure of Concrete Using A 

Micromechanical Model,” Magazine of Concrete Research 49 (181), pp. 303-322. 

Soroushian, P., Ravanbakhsh, S. (1998). “Control of Plastic Shrinkage Cracking with Specialty 

Cellulose Fibers,” ACI Materials Journal 95(4), pp. 429–435. 

Zuda, L., Pavlik Z., Rovnanikova, P., Bayer, P., Cerny, R. (2006). “Properties of Alkali Activated 

Aluminosilicate Material after Thermal Load,” International Journal of Thermophysics 27(4), 

pp. 1250-1263. 

 



www.manaraa.com

93 
 

Table 1. Chemical composition of fly ash and Portland cement 

 SiO2 Al2O3 Fe2O3 SO3 CaO MgO Na2O K2O P2O5 LOI 

Fly ash 30.7 16 6.8 3.5 28.8 6.74 2.97 0.27 0.64 0.49 

PC 20.1 4.4 3.1 2.8 64 2.22 0.14 0.58 0.06 2.46 

Note: All values in mass %, expressed on an oven-dry basis; LOI: loss on ignition at 1000°C 

 

Table 2. Specification of sodium silicate solution and sodium hydroxide 

Product Sodium silicate solution (Na2SiO3) Sodium hydroxide (NaOH) 

Company Sigma-Aldrich Fisher Scientific 

Grade Reagent Certified ACS  

Composition Na2O: 10.6%, SiO2: 26.5% NaOH Solid 

Density 1.39 g/ml  2.13g/ml 

Formula (NaOH)x(Na2SiO3)yzH2O NaOH 

 

Table 3. Mix proportion of pastes 

Mixture 

Activator 

Admixture 
Module 

Concentration, 

% 

1.0-40% 
1.0 40 

– 

1.0-40%-SR SR 

1.0-50% 
1.0 50 

– 

1.0-50%-SR SR 

1.5-40% 
1.5 40 

– 

1.5-40%-SR SR 

1.5-50% 
1.5 50 

– 

1.5-50%-SR SR 

PC 
Water 

– 

PC-SR SR 

                      Note: Mixtures in this paper are all identified as Module-Concentration-Admixture 



www.manaraa.com

94 
 

 

Figure 1. Mini slump cone 

 

 

Figure 2. Paste spread flow in mini slump test 

 

 

Figure 3. Mold for drying shrinkage 
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Figure 4. Micrometer for drying shrinkage measurement 

 

 

Figure 5. Restrained ring shrinkage test set-up 

 

 

Figure 6. DAS for restrained ring shrinkage test 
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Figure 7. Paste ring specimen under drying 

 

 

Figure 8. Mini slump spread diameter of FG and cement paste 
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Figure 9. Compressive strength of FG and PC paste with and without SR 

 

 

Figure 10. Mass loss of PC and FG pastes 
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Figure 11. Free drying shrinkage of PC and FG pastes 

 

 

Figure 12. Restrained ring shrinkage for PC and FG pastes  
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Figure 13. Cracking time of PC and FG pastes in restrained rig test 

 

  

Figure 14. Crack width of PC and FG pastes in restrained ring test 
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         PC (1.5)         PC-SR (0.9)            1.0-50% (6)    1.0-50%-SR (3.2)         1.5-50% (2.5)       1.5-50%-SR (1.2)      

                                               

                          1.0-40% (1.3)        1.0-40%-SR (0.7)                 1.5-40% (1)         1.5-40%-SR (0.2) 

Figure 15. Cracks on ring specimens (widths were presented in mm)  

 

 

Figure 16. Stress rate of PC and FG pastes during restrained ring shrinkage 
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Figure 17. Stress rate vs. cracking time of PC and FG pastes 
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CHAPTER 6.THE EFFECT OF SLAG ON MECHANICAL PROPERTIES OF 

ENGINEERED GEOPOLYMER COMPOSITE 

Yifeng Ling, Kejin Wang, Guyu Shi 

Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames 

IA 50010 

Abstract 

This paper aimed to investigate the effect of slag replacement on mechanical properties of low-

calcium (Class F) fly ash-based engineered geopolymer composite (EGC). In this regard, four 

different percentages of slag replacement (i.e., 0%, 10%, 20%, 30%) were used with NaOH and 

Na2SiO3 combined activator to develop the fly ash-based EGCs exhibiting strain hardening 

behavior under uniaxial tension. Randomly oriented short polyvinyl alcohol (PVA) fibers (2% by 

volume of matrix) were employed to reinforce the relatively brittle fly ash-based geopolymer 

matrix. The mechanical properties of the EGCs, including compressive strength, elasticity, 

uniaxial tensile behavior, flexural bending strength and pullout bond strength, were evaluated. 

Experimental results revealed that all EGCs exhibited strain hardening behavior. 20% slag 

replacement improved the mechanical strength most. However, as slag replacement was increased, 

the tensile strain capacity, ultimate deflections, toughness and ductility decreased. In addition, 

bond strength can be estimated from compressive strength of EGCs.   

Key words: Engineered geopolymer composite (EGC), Fly ash, Slag, Pullout test, 

Mechanical property 
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Introduction 

Engineered cementitious composite (ECC) incorporating a small amount of discontinuous 

fibers (typically 2% or less by volume) is about 600 times as ductile as normal Portland cement 

concrete in tension (Li and Kanda 1998) and exhibits a tensile strain capacity of up to 6% (Kong 

et al. 2003). However, a typical ECC mix design has a two to three times higher cement content 

compared to conventional Portland cement (PC) concrete (Wang and Li 2007). The high cement 

content in ECC mix design apparently compromises sustainability performance of this material 

(Wang and Li 2007). Hence, it is necessary to develop economical ECCs with lower CO2 emissions 

during cement production, while maintain the tensile ductility properties. The best solution to 

achieve this goal is to completely replace the PC binder in the ECC mix design by an alternative 

cementless binder, such as geopolymer.  

Recent studies (e.g., Fernandez et al. 2006, Sofi et al. 2007) have reported similar mechanical 

properties of geopolymer concrete that are favorable for its use as a construction material. The 

bonding behavior between the concrete and the reinforcing steel is an important mechanism for 

the performance of reinforced concrete as a composite material. It is important to understand the 

bonding behavior of geopolymer composite in order to use it as an alternative to PC concrete in 

reinforced concrete structures. Limited research (i.e., pull-out tests) have been conducted to assess 

bonding strength of fly ash geopolymer mixtures (Fernandez et al. 2006, Sofi et al. 2007). 

Comparable results were derived for both fly ash geopolymer and PC mixtures.  

Recently, a feasibility study was conducted to develop a geopolymer-based ECC, known as 

engineered geopolymer composite (EGC), where the PC binder was completely replaced by a fly-

ash-based geopolymer binder. Mechanical test results indicated that the EGC exhibited strain 

hardening and deflection hardening behaviors (in uniaxial tension and bending, respectively) were 
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accompanied by multiple cracking (Ohno and Li 2014). However, their proposed fly-ash-based 

EGC mixtures possessed low compressive and uniaxial tensile strengths, ranging from 17.4 to 27.6 

MPa and 2.9 to 3.4 MPa, respectively, comparing with typical ECC (50 - 60 MPa in compressive 

strength and 4 – 5 MPa in tensile strength. These low strengths may limit widespread application 

of these composites in the construction industry. Another study added slag to fly ash-based 

geopolymer mixtures, yielding significantly improved strength (Li and Liu 2007). This study in 

Chapter 6 aimed to investigate the mechanical properties, including compressive, flexural bending, 

tensile and bonding strengths, of the newly developed fly ash-based EGC with partial slag cement 

replacement. In order to furthest improve strength of fly ash-based EGC, the activator to binder 

mass ratio was reduced, and the concentration of activator was increased in this paper. These 

modifications would greatly reduce the workability of fly ash-based EGC. Therefore Class F fly 

ash was used in this paper to maintain the good workability of EGC because geopolymer made by 

Class F fly ash has higher workability than Class C fly ash due to lower CaO content in Class F 

fly ash. 

Experimental Program 

Materials 

The fly ash (FA) used was low-calcium (Class F) with a specific gravity of 2.61 g/cm3 based 

on ASTM C618. A ground granulated blast furnace slag with a specific gravity of 2.50 g/cm3 was 

also employed in this study. The major chemical components of fly ash and slag are provided in 

Table 1 as determined by x-ray fluorescence (XRF). The activator was a combination of NaOH 

and Na2SiO3 (water glass). Their products specifications are listed in Table 2. The polyvinyl 

alcohol (PVA) fibers used in the research were supplied by Kuraray of Japan. The characteristics 

of used PVA fiber are presented in Table 3. 
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Mix proportion 

Solid NaOH, Na2SiO3 solution and tap water were mixed together with a SiO2/Na2O mole ratio 

(Module) of 1.0 and solute (i.e., NaOH and Na2SiO3) mass concentration (Concentration) of 60% 

to prepare the activator. Four fly-ash-based EGC mixtures with 0%, 10%, 20%, and 30% slag 

replacement by weight of fly ash content were prepared (denoted as (1) FA-0%S, (2) FA-10%S 

(3) FA-20%S, and (4) FA-30%S respectively). The activator solution to binder (i.e., FA and slag 

cement) ratio of 0.27 was selected to prepare the EGC mixtures. According to the recommendation 

from the manufacturer, 2% PVA fibers by volume of matrix was added to EGC mixtures. Table 4 

presents mix proportions of fly ash-based EGC mixtures reported in this paper. 

Mixing  

The mixing procedure was initiated by combining and mixing the binder (i.e., FA and slag) for 

2 min in a laboratory Hobart mixer. The alkaline activator solution was prepared 24 h prior to 

incorporation into the dry mix. This allowed for dissipation of heat attributed to the exothermic 

chemical reaction of Na2SiO3 and NaOH. The solution was then added gradually to the mixer and 

mixed for another 3 min to ensure a homogeneous and uniform mixture. In each batch, once a 

consistent matrix was reached, PVA fibers were gradually added, taking care to ensure uniform 

fiber dispersion. The whole mixing procedure for each composite generally took 8–10 min.  

Compressive strength test 

As per ASTM C109, the fresh EGC was placed and tamped in two layers in 50.8 mm cubic 

molds. Cast specimens were compacted for 10 s on a vibrating table. All EGC specimens were 

subjected to heat curing. In this regard, all molds were sealed to minimize moisture loss and placed 

in an oven at 50℃ for 24 h. At the end of heat curing period, the specimens were removed from 
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the molds and cured in the oven at 50℃ until the day of testing. All EGC specimens were tested 3 

days, 7 days and 28 days after casting. For each testing, three replicates were tested in order to 

check the variability of performance under compression.  

Tensile strength test  

Uniaxial tension tests were conducted to evaluate the tensile behavior of the developed fly ash-

based EGCs. For each mixture, two composite panels in the shape of a dog bone were cast and 

cured for 28 days in the same environmental conditions as specimens prepared for compressive 

strength. The schematic of the test specimen and apparatus is illustrated in Fig. 1. 

All specimens were tested in uniaxial tension under displacement control using a mechanical 

testing system (MTS) testing machine with hydraulic wedge grips. In accordance with the Japan 

Society of Civil Engineers (JSCE), the displacement rate was 0.5 mm/min. Panel specimens were 

polished on the two ends to facilitate gripping. Specimens were in proper alignment with the 

machine hydraulic grips. The MTS machine had a fully digital control panel and software to 

automatically run the tests and collect the load. In addition, two linear variable differential 

transformers (LVDTs) were also employed to measure displacements between two points on the 

specimen with a gauge length of 110 mm, as shown in Fig. 1. Resulting load versus displacement 

data were recorded and tensile stress versus strain curves were plotted. 

According to previous studies on micromechanical design of conventional ECCs (Kanda and 

Li 1999), criteria (i.e., stress-based condition) must be satisfied in order to achieve pseudo-strain 

hardening (PSH) behavior accompanied with multiple fine cracks. The stress-based condition can 

be expressed as  

σfc≤σ0                                                                                                  (1) 



www.manaraa.com

107 
 

where σ0 = maximum fiber bridging stress (i.e., ultimate tensile strength of the composite); and 

σfc = tensile first-crack strength of the composite. Fig. 2 illustrated typical stress (σ) versus strain 

(Ɛ) curves for strain hardening behavior. According to the stress-based condition, if σ0 exceeds 

σfc, multiple cracking occurs with increasing load. Otherwise, the composite immediately fails 

after initiation of first crack from a defect site.  

In accordance with the stress condition for PSH behavior, Kanda and Li proposed a 

performance index σ0/σfc (Kanda and Li 2006). Theoretically, this index must exceed unity to 

achieve PSH behavior in a fiber-reinforced composite. The higher the performance index value, 

the greater the possibility of saturated multiple cracking or saturated PSH behavior, resulting in a 

higher tensile strain capacity of the composite. The area under the stress-strain curve up to failure 

can be derived as the tensile toughness of the EGC, which is an indication of the total energy 

absorption capacity of the material. The tensile toughness and the tensile elasticity (the slope of 

elastic portion i.e., σfc/Ɛfc) of EGC were derived from stress-strain curve as shown in Fig. 2.  

Flexural bending test 

A four-point flexural bending test was carried out on EGC overlay slab to evaluate flexural 

bending behavior of EGC mixes. For each mix, two slabs with the dimensions of 711 × 108 × 13 

mm were cast and cured similar to the cube specimens for 28 days before testing. Each slab was 

loaded under four-point bending with span of 457 mm between supports and loading was applied 

symmetrically at 152 mm from the supports using an MTS testing machine. The loading 

configuration is shown in Fig. 3. Two LVDTs were employed to monitor the midspan deflection 

of the slab at both sides of middle. In accordance with Martin et al. (2007) and Sarker et al. (2013), 

the displacement control rate was 0.2 cm/min until its failure. Fig 4. illustrates the EGC slab under 

bending test.  
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According to four-point flexural bend model and the loading span is one-third of the support 

span, the flexural stress could be calculated following Eq. (2):  

𝜎 =
𝐹𝐿

𝑏𝑑2
                                                                  (2) 

where σ is flexural stress; F is the load at the fracture point; L is the length of the support span; b 

is the width of slab and d is thickness of slab.  

Pullout bond strength test 

Direct tension pullout bond test was conducted to investigate the bond strength of steel bar 

embedded in EGCs. For each mix, two cylinders of Փ152 × 152 mm (Փ=diameter) with a Փ12.6 

× 609.6 mm smooth steel bar embedded in the center of specimen as shown in Fig. 5, were cast 

and cured similar to the cube specimens for 28 days before testing. The properties of the used steel 

bar are shown in Table 5. The steel bar was covered by a 76 mm long polyvinyl chloride (PVC) 

tube along the top half of cylinder where the steel bar is free to move and embedded all the way 

through the cylinder with 19 mm out of specimen bottom as shown in Fig. 5. Therefore, the 

effective bond length between EGC and steel bar is 76 mm. The reason for PVC tube covering is 

to avoid stress concentration on EGC during pullout. During the test, the top of steel bar was 

gripped by the wedge on MTS machine. An alloy plate was placed on the top surface of EGC 

cylinder by four bolts tightened on four threaded rods to fix the EGC cylinder as seen in Fig. 5. 

The steel bar was subjected to a tensile force that is transferred to the EGC as tensile stresses 

throughout the bond stresses between the EGC and the steel.  

An average result of two specimens was derived for each EGC mixture. The bar slip was 

recorded by the two LVDTs installed on the two sides of cylinder for until failure. In order to 

compensate the displacement on the steel bar itself caused by tension, a micro-strain gauge was 
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pre-installed on the steel bar surface. The strain of the steel during the pullout test was recorded 

by a data logger until failure. The bond stress was computed using Eq. (3): 

τ = P/(πLedb)                                                             (3) 

where τ is the bond stress; P is the load; Le is the contacted length of bar in EGC; and db is the 

bar diameter. The slip of bar (s) was calculated according to Eq. (4) 

s = dL – Ɛ×Le                                                             (4)  

where dL is the displacement of bar from LVDT; and Ɛ is the microstrain of bar from the strain 

gauge.  

All specimens were tested under displacement control rate of 0.3 mm/min in accordance with 

Qian and Li. (2011). A schematic of the pullout test setup is shown in Fig. 5.  

Results and Discussion 

Compressive strength 

The compressive strength of each EGC mixture with standard error bars is presented in Fig. 6. 

The 20% slag EGC mixture exhibited the highest compressive strength at all testing ages that is 

likely due to the production of aluminosilicate hydrate and calcium silicate hydrate gels (Palomo 

1999, Chi 2012). However, further replacement of slag to 30% led to a decreased compressive 

strength. This is consistent with a previous report that attributed to excessive Ca undergoes a 

hydration reaction forming Ca(OH)2 which might lead to expansion therefore decreased the 

strength (Wardhono et al. 2017). The compressive strength of 10% slag replacement EGC mixture 

only slightly increased at 28 days compared to 0% slag cement replacement mixture. The same 
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trend on compressive strength with different percentage of slag replacement has been reported 

previously (Hassan and Ismail 2018). 

Tensile strength  

Tensile stress-strain behaviors of the EGC mixtures are presented in Fig. 7. all the mixtures 

exhibited strain hardening behavior accompanied by multiple cracking because of the bridging 

mechanism of the PVA fibers. The uniaxial tensile strength of the EGC mixtures with slag addition 

developed in this paper are higher than those of the slag-based EGCs developed by Lee et al. 

(2012) and the fly ash-based EGCs developed by Ohno and Li (2014).   

The first-crack strength (σfc), tensile elasticity, ultimate tensile strength (σ0), tensile strain 

capacity, toughness and stress index (σ0/σfc) of each mix are list in Table 6. The ultimate tensile 

strengths of all the EGC mixtures were significantly higher than the first crack strength. FA-20%S 

exhibited the highest first-crack strength which corresponds to its highest ultimate tensile strength. 

The first-crack strength of FA-30%S, FA-10%S, and FA-0%S were 16.1, 32.3, and 45.2% lower, 

respectively. The ultimate tensile strength of FA-30%S, FA-10%S, and FA-0%S were 10.3, 25.0, 

and 30.9% lower, respectively than that of FA-20%S. The decrease in the ultimate tensile strength 

could be due to the interfacial properties. In other words, the chemical bonding energy and the 

frictional bond strength of FA-20%S increased more than the cracking strength compared to the 

other EGC composites, resulting in higher fiber-bridging strength (Lee et al. 2012). However, the 

tensile elasticity was increased with the increment of slag addition up to 2.98 GPa for FA-30%S 

which is attributed to C-A-S-H gel formed through the activation of slag leading to reduce porosity 

(Criado et al. 2016). Among all EGCs, FA-0%S exhibited the highest tensile strain capacity. With 

slag content increasing, the tensile strain capacity decreased. One of the underlying reasons for 

this considerable reduction in the tensile strain capacities with slag addition lies in their different 
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stress indices. The stress index of FA-0%S was the highest among the EGCs. In addition, the stress 

indices of FA-10%S, FA-20%S, and FA-30%S were 12.3%, 13.8%, and 15.2% lower, 

respectively, than that of FA-0%S. As mentioned previously, the higher the stress index value, the 

greater the possibility of saturated PSH behavior, which results in a higher tensile strain capacity 

of the composite. Therefore, the stress-based condition for PSH behavior (i.e., Eq. 1) is satisfied. 

The toughness results also reveal that with slag increase from 0% to 30%, toughness reduced from 

12.6 to 3.7 J/cm3 which means that the energy absorption of the EGC decreased as slag content 

increasing. This trend corresponds to tensile strain capacity. Generally, the incorporation of slag 

implied that the EGCs exhibited a low ductility and toughness but a high ultimate tensile strength.      

The multiple cracking pattern of each mix is presented in Fig. 8. After unloading, a clear trace 

of all visible cracks was obtained by water spray. Mixture without slag cement addition, FA-0%S, 

exhibited the uniform and enormous micro-cracks distribution with tightly controlled crack width 

(i.e., saturated cracking behavior) were observed, which corresponds to its significantly high 

tensile strain capacity. However, with the increase of slag addition from 10% to 30%, the crack 

spacing was bigger and the crack distribution was not uniform (i.e., unsaturated cracking 

behavior). As slag content increasing, the EGC tended to be more brittle.  

Flexural bending strength 

The stress-deflection curves of flexural bending test are shown in Fig. 9. The stress deflection 

of all EGCs was reinforced with PVA. It was found that for the 20% and 30% slag addition of 

EGC, the material demonstrated relative brittle behavior, the stress decreases rapidly at around 10 

mm midspan deflection. However, for the FA-0%S and FA-10%S, the curves were flatter and the 

midspan deflection increased up to 39.81 and 35.32 mm respectively. Moreover, the pseudo 

hardening responses appeared generally, which were much dependent on the slag addition.  
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In the four-point bending test, the ductility index can be obtained as the ratio of mid-span 

deflection at failure to that at the first crack (Jaejer et al. 1997). The greater ductility index indicates 

better ductility. A summary of modulus of rupture (MOR), deflection at first crack (Dfc), deflection 

at failure (Dfl) and ductility index (Dfl/ Dfc) is reported in Table 7. Slag addition increased MOR. 

Among the three percentage of slag addition, the mix with 20% slag gave the highest MOR, while 

the mix with 0% slag gave the lowest MOR. This founding corresponds to compressive strength 

results. The midspan deflection at first crack increased with MOR rising. The maximum mid-span 

deflection at failure reached 39.81 mm without slag and it was declined as slag addition increasing. 

Especially from 10% to 20% slag addition, 68.8% reduction in mid-span deflection at failure was 

observed. The data showed that the ductility was decreased with increment of slag content. FA-

0%S gave the highest ductility index value. However, the ductility characteristics were 

dramatically reduced from 10% to 20% slag addition. It should be noted that FA-20%S gave the 

lowest flexural ductility.  

In order to show multiple cracks clear, water was used to dampen the surface of failure 

specimens. Multiple cracks were uniformly distributed along the bending moment for all EGCs 

(Fig. 10). The number of cracks reduced and their spacing increased as slag content increased. The 

cracking pattern also indicated that the EGCs had very good deflection hardening.  

Pullout bond strength 

The general profile of pullout curve is illustrated in Fig. 11. It can be decomposed into three 

regimes. After debonding, the fiber can undergo sliding with either slip hardening, constant friction 

or slip softening behavior based on the different fiber properties (Redon et al. 2001).  
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Fig. 12 shows the bond stress-slip relationship for EGC specimens. All EGC mixtures 

exhibited pullout mode of failure with post-peak slip development. After the peak load, the pullout 

load dropped a little quickly and still maintain a constant bond stress until complete failure. They 

showed low bond stress reduction with slip evidenced by a high ductility measurement after peak 

load which indicated certain improvement in bond strength with some enhanced post-peak 

behavior (more ductility) due to high fiber confinement. The ultimate bond strength (τu), ultimate 

slip (su) and compressive strength (fcu) of the EGCs are listed in Table 8.   

It is obvious that bond strength of FA-20%S is the highest, and FA-0%S is the lowest which 

is coherent with compressive strength. This is associated with the decreased porosity in the 

interfacial zone, which can lead to an increase of the fiber-matrix contact surface, resulting in a 

higher frictional bond (Kim et al. 2007). Moreover, the ultimate slip reduced significantly as the 

slag content increased. This also reveals that the slag addition could decrease ductility of the EGC. 

Based on BS 8110, the relationship between bond strength (τu) and compressive strength (fcu) 

of concrete can be expressed as: 

τ𝑢 = β√𝑓𝑐𝑢                                                              (5) 

Where τu is bond strength; β is a coefficient dependent on specimen; and fcu is compressive 

strength. 

The following equation was proposed to predict bond strength according to compressive 

strength for the fly ash/slag blended EGCs,  

                                       (6) 
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The experimental bond strength and predicted bond strength are present in Table 9. Their linear 

regression is plotted in Fig.13. Comparing with the predicted bond strength determined using Eq. 

(6) and experimental bond strength from pullout test, it can be concluded that the predicted bond 

strength obtained using proposed equation agree well with the values obtained from the test. 

Regarding the fly ash/slag blended EGCs, BS equation is still valid with β = 0.4 for compressive 

strength less than 80 MPa and with β = 0.6 for compressive strength greater than or equal to 80 

MPa. 

Conclusions 

Based on the test results, the following conclusions can be drawn: 

1. Compressive strength of EGC can be enhanced by adding slag. However, peak strength is 

at 20% slag addition. The proposed EGC mixes have ultrahigh compressive strength by 

using low l/b of 0.27 and adding slag. The highest strength is 102 MPa with 20% slag 

addition for 28-day strength. 

2. All EGCs exhibited strain hardening behavior in tension. Slag addition improved tensile 

strength of EGCs as well and the maximum was from the EGC with 20% slag addition. 

The strength turns to decrease when slag addition is over 20%. The highest tensile strain 

capacity of 3.14% was obtained without slag addition. With slag addition increasing up to 

30%, the tensile strain capacities of composites decreased significantly, which was 0.74% 

as minimum. The higher stress index (σ0/σfc) of the EGCs is one of the underlying reasons 

for its significantly high tensile strain capacity. The toughness of EGCs was reducing as 

slag content increasing. 

3. For the EGC slabs, replacement of fly ash by slag can considerably improve the Modulus 

of Rupture, but on the other hand, significantly reduced deflection at failure and ductility. 
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MOR reached 18.5 MPa with 20% slag addition which is twice of the EGC without slag. 

The most reduction of 76.2% in deflection at failure comes from the EGC with 30% slag 

addition. 83.2% reduction in ductility were captured after 20% slag addition. Additionally, 

the deflection at first crack is dependent upon MOR instead of slag addition.  

4. As the slag content increases, the bond strength increases up to maximum 6.2 MPa for 20% 

slag and the corresponding ultimate slip decreases. The 20% slag addition gained a 77.1% 

increase in bond strength of pure fly ash EGC.  

5. There is excellent relationship between compressive strength and bond strength of EGCs. 

Equation to calculate the EGC’s bond strength based on compressive strength are proposed. 

There is a good agreement between experimental results of bond strength and those of 

predicted equation. The BS equation is still working for the bond strength calculation of 

the EGC.  

6. Addition of slag is a good approach to improve strength meanwhile maintain the strain 

hardening behavior for fly-ash-based EGC.  
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Table 1. Chemical composition of fly ash and slag 

 SiO2 Al2O3 Fe2O3 SO3 CaO MgO Na2O K2O Others LOI 

Fly ash 57.06 18.82 5.43 0.45 11.8 2.89 0.64 1.12 1.74 0.03 

Slag 36.5 8.54 0.83 0.6 41.1 9.63 0.29 0.44 2.07 2.46 

Note: All values in mass %, expressed on an oven-dry basis; LOI: loss on ignition at 1000 °C 

 

Table 2: Specification of Sodium silicate solution and sodium hydroxide 

Product Sodium silicate solution (Na2SiO3) Sodium hydroxide (NaOH) 

Company Sigma-Aldrich Fisher Scientific 

Grade Reagent Certified ACS 

Composition Na2O: 10.6%, SiO2: 26.5% NaOH Solid 

Density 1.39 g/ml 2.13g/ml 

Formula (NaOH)x(Na2SiO3)y•zH2O NaOH 

 

Table 3. Properties of PVA Fiber 

Parameter Value 

Fiber label RECS 15 

Diameter (µm) 40 

Length (mm) 12 

Young’s modulus (GPa) 41 

Elongation (%) 6.7 

Density (g/cm3) 1.3 

Tensile strength (MPa) 1,586 
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Table 4. Mix Proportions of EGCs 

Mix designation Fly ash Slag Activator PVA fiber 

FA-0%S 1.0 - 0.27 0.02 

FA-10%S 0.9 0.1 0.27 0.02 

FA-20%S 0.8 0.2 0.27 0.02 

FA-30%S 0.7 0.3 0.27 0.02 

Note: All numbers are mass ratios of fly ash weight except fiber content (volume fraction). 

Table 5. Properties of used steel bar 

Diameter 

(mm) 

Length 

(mm) 

Yield strength 

(MPa) 

Ultimate strength 

(MPa) 
Elongation (%) 

12.6 609.6 531 680 16 

 

Table 6. Tensile strength test results 

Mix  σfc 

(MPa) 

Tensile 

elasticity, 

(GPa) 

σ0 

(MPa) 

Tensile strain 

capacity,  

(%) 

Toughness, 

(J/cm3) 

Stress index, 

(σ0/ σfc) 

FA-0%S 3.4 1.18 4.7 3.14 12.6 1.38 

FA-10%S 4.2 1.41 5.1 1.62 6.9 1.21 

FA-20%S 5.7 1.58 6.8 1.04 5.5 1.19 

FA-30%S 5.2 2.98 6.1 0.74 3.7 1.17 
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Table 7. Flexural strength test results 

Mix  MOR (MPa) Dfc, (mm) Dfl, (mm) Ductility index 

FA-0%S 9.3 1.26 39.81 31.6 

FA-10%S 10.4 1.41 35.32 25.0 

FA-20%S 18.5 2.07 11.03 5.3 

FA-30%S 15.3 1.60 9.46 5.9 

 

Table 8. Pullout bond strength test results 

Mix  τu, (MPa) su, (mm) fcu, (MPa) 

FA-0%S 3.5 16.3 72.6 

FA-10%S 3.7 11.9 73.9 

FA-20%S 6.2 9.4 102.3 

FA-30%S 5.9 7.4 82.3 

 

Table 9. Experimental (τu) and predicted (τp) bond strength 

Mix  τu, (MPa) τp, (MPa) 

FA-0%S 3.5 3.41 

FA-10%S 3.7 3.44 

FA-20%S 6.2 6.07 

FA-30%S 5.9 5.44 
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Figure 1. Uniaxial tension test setup  

 

 

Figure 2. Typical stress/strain curve of strain hardening composites 
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Figure 3. Schematic illustration of bending test setup 

 

 

Figure 4. EGC slab under bending test 
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Figure 5. Pullout test setup 

 

 

Figure 6. Compressive strength of EGCs 
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Figure 7. Tensile stress-strain responses of EGCs 

 

                               

                   (a) FA-0%S                                                                           (b) FA-10%S 

                                          

                   (c) FA-20%S                                                                        (d) FA-30%S 

Figure 8. Multiple cracking behavior of EGCs on tension test 
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Figure 9. Flexural stress-deflection responses of EGCs 
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                                   (a) FA-0%S                                                                  (b) FA-10%S 

                      

                                   (c) FA-20%S                                                                 (d) FA-30%S 

Figure 10. Multiple cracking pattern of EGCs under flexural loading.  

 

 

 

 

Figure 11.Typical curves for pullout test 
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Figure 12. Bond stress-slip relationships for EGCs 

 

 

Figure 13. Experimental bond strength versus predicted bond strength 
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CHAPTER 7. CONCLUSIONS  

This study investigates the effect of design parameters namely Module, Concentration, L/F, 

and temperature and time on setting time, compressive strength and hydration of FG. The statistical 

analysis and modeling on the prediction of setting time, compressive strength, and heat generation 

were conducted to understand the effect of each design parameter FG performance. The 

flowability, compressive strength and shrinkage behavior of FG paste were studied in terms of 

Module and Concentration. Comparing with PC, the effect of SR on reducing FG shrinkage was 

also evaluated by using free drying shrinkage and restrained ring shrinkage. In addition, a study of 

fly ash/slag blended EGC was provided in this dissertation. The effectiveness was determined of 

slag addition up to 30% in mechanical properties of EGC (i.e. compressive strength, tensile 

strength, flexural bending strength and pullout bond strength). Tensile strain capacity, toughness 

and ductility of fly ash/slag blended EGCs were assessed. Furthermore, a predictive model of bond 

strength based on compressive strength was established for EGC.  

The main conclusions of this study are drawn as follows: 

1. The increase in Module of an activator solution accelerated setting time, but reduced 

strength, total heat generation, reaction time and geopolymerization peak time. As solute 

Concentration increased, setting time for mixtures of 1.0 and 1.5 Modules became longer, 

but shorter for mixtures with 2.0 Module, while compressive strength, total heat, 

terminated time and peak time increased. The Modules less than 1.5, the Concentrations 

between 40% and 50%, the lower L/F ratios less than 0.40, and higher curing temperature, 

such as 50℃, were preferred to synthesize a geopolymer system using high-calcium fly 

ash. 
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2. From the predictive ANN models of setting time, compressive strength and heat 

generation, it revealed that the setting time had extremums at Module of 1.4 and 1.8 

respectively, when Module changed from 1.0 to 2.0. It means the trend of setting time with 

various Module changed at Module of 1.4 and 1.8. L/F is the most influential parameter on 

setting. When Module is over 1.5, it has limited effect on strength while the solute 

Concentration influences compressive strength most. The heat generation is significantly 

dependent on the Module. 

3. At a given liquid-to-fly ash ratio (L/F), FG paste exhibited similar flowability and drying 

shrinkage behavior, considerably higher compressive strength, and less shrinkage potential 

than PC.  

4. Increased Module of activator could reduce flowability, compressive strength, drying 

shrinkage and cracking potential of FG. An increased solute Concentration could reduce 

flowability of FG and increase compressive strength, drying shrinkage and shrinkage 

potential of FG. 

5. SR slightly decreased flowability and compressive strength of FG, but significantly 

reduced the drying shrinkage up to 52% and shrinkage potential for both FG and PC.  

6. Mass loss is not the only reason for drying shrinkage of FG. The time to cracking could be 

used as an index for the cracking tendency of FG pastes. 

7. Mechanical properties of EGC including compressive, tensile, flexural and bond strength 

could be enhanced by adding slag. However, there is a maximum strength at 20% addition. 

The proposed EGC mixes have ultrahigh 28-day compressive strength up to 102 MPa with 

20% slag addition by using low l/b of 0.27. All EGCs exhibited strain hardening behavior 

in tension. The highest tensile strain capacity of 3.14% was obtained without slag addition. 
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With slag addition increasing up to 30%, the tensile strain capacities of composites 

decreased significantly, which was 0.74% as minimum. The stress index could be used to 

assess tensile strain capacity of the EGCs. The toughness of EGCs was reducing as slag 

content increasing. 

8. The replacement of fly ash by slag can considerably improve the modulus of rupture, but 

on the other hand, significantly reduced deflection at failure and ductility. MOR reached 

18.5 MPa with 20% slag addition which is twice of the EGC without slag. The deflection 

at failure decreases with the slag addition increasing. 83.2% reduction in ductility were 

captured for the EGC with 20% slag addition.  

9. As the slag addition increases, the bond strength increases up to maximum 6.2 MPa for 

20% slag and the corresponding ultimate slip decreases. The 20% slag addition gained a 

77.1% increase in bond strength of pure fly ash EGC.  

10. Equations to calculate the EGC’s bond strength based on compressive strength are 

proposed. These models work for the bond strength calculation of the EGC.  

11. The slag addition is a good approach to improve strength while maintaining the strain 

hardening behavior for fly-ash-based EGC. 
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CHAPTER 8. RECOMMENDATIONS FOR FUTURE RESEARCH 

The work in this dissertation has provided optimized mix proportions regarding the basic 

design parameters based on the given fly ash from a stable source (certain power plant). However, 

the parameters from fly ash composites (e.g., Si to Al ratio in fly ash) need to be considered if the 

source of fly ash changes. Following the hydration process of FG investigated in this study, the 

phases on the hydration curve should be specified related to initial setting, final setting or even 

strength development using more accurately calorimetry test in future so that the theory of 

geopolymer reaction could be established. 

Efforts have been made to develop predictive models of FG performance using ANNs. 

However, one of the biggest disadvantages of ANNs is the expression of ANN model. Further 

research is required, particularly to derive straightforward equations to predict FG performance or 

even for performance-based mix design.  

The endeavor presented here attempts to evaluate the shrinkage cracking potential of 

geopolymer pastes according to the stress rate from restrained ring test. Since the magnitude of 

stress rate is dependent on the dimension of device. A specification of shrinkage cracking potential 

based on stress rate for geopolymer paste with a specified dimension of test device=should be 

demonstrated or even published in future. Therefore, the evaluations on shrinkage cracking 

potential of geopolymer paste could be qualitative from low to high. 

The mechanisms of drying shrinkage for FG are not clear in this study. Since the moisture loss 

is not the only reason governing drying shrinkage, it is necessary to characterize pore structure of 

FG to figure out the reasons causing drying shrinkage. More shrinkage related properties such as 
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autogenous shrinkage, creep and shrinkage control methods should be explored for geopolymer 

paste.  

Only geopolymer paste was studied in this dissertation. Geopolymer grout and concrete should 

be studied in future for practical use which are the major applications in sealing joints and 

construction respectively.  

Only physical and mechanical properties of the designed geopolymer mixes were studied. The 

chemical interactions among the activators, admixtures, fly ash and slag that dominate the 

performance of geopolymer need to be studied in future.  

Geopolymer paste samples produced in this study were cured at an elevated temperature (50 

ºC). For field use, ambient temperature curing for the strength development of fly ash geopolymer 

should be studied in order to reduce the cost.  

Durability of a construction material significantly influence its service life. Although SR and 

shrinkage of the geopolymer paste were studied, other durability properties such as freezing and 

thawing durability have not been studied.  
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Executive Summary 

The objective of the research was to investigate the physical/chemical and water flow 

characteristics of various pervious concrete mixes made of different concrete materials and their 

effectiveness in attenuating water pollution. Four pervious concrete mixes were prepared with 

Portland cement and with 15% cementitious materials (slag, limestone powder, and fly ash) as a 

Portland cement replacement. 

All four pervious concrete mixtures had acceptable workability, with mixtures made with 

Portland cement and 15% fly ash replacement having better workability than those made with 

15% slag and 15% limestone powder replacement. The unit weight of these fresh pervious concrete 

mixtures ranged from 115.9 lb/yd3 to 119.6 lb/yd3, with the mixture made with 15% slag having 

the lowest unit weight (115.9 lb/yd3) and the mixture made with 15% fly ash having the highest 

unit weight (119.6 lb/yd3). The 28 day compressive strength of the pervious concrete mixes ranged 

from 1858 psi (mix with 15% slag) to 2285 psi (pure cement mix). The compressive strength 

generally increased with unit weight and decreased with total porosity (air void ratio). The 

permeability of the four mixes generally decreased with unit weight and increased with total 

porosity. The permeability coefficients ranged from 340 in./hr for the pure cement mix to 642 

in./hr for the mix with 15% slag. The total porosities (or air void ratios) of these pervious concrete 

mixes ranged from 24.00% (mix with 15% slag) to 31.41% (pure cement mix) as measured by the 

flatbed scanner test method, while the porosities ranged from 18.93% (mix with 15% slag) to 

24.15% (pure cement mix) as measured by the RapidAir method. It was not clear why the concrete 

porosities were not correlated to unit weight. The total porosity of the four pervious concrete mixes 

measured by the flatbed scanner method were all higher than those measured by the Rapid Air 
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method, but the specific surface areas measured by the flatbed scanner method were all lower than 

those measured by the Rapid Air method. 

For the pollution abatement experiments, mixes with fly ash and limestone powder removed 

about 30% of the input naphthalene concentration, while the mix with pure cement removed 10% 

and the mix with slag only removed 0.5% of the influent naphthalene concentration. The water 

volume balance showed that less than 1% of the water added was retained in the experimental 

column setup. 
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